K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

x2 + 2y2 + 2xy - 4x + 6y + 29 = 0

<=> ( x2 + 2xy + y2 - 4x - 4y + 4 ) + ( y2 + 10y + 25 ) = 0

<=> [ ( x2 + 2xy + y2 ) - 2( x + y ).2 + 22 ] + ( y + 5 )2 = 0

<=> ( x + y - 2 )2 + ( y + 5 )2 = 0 (*)

<=> \(\hept{\begin{cases}\left(x+y-2\right)^2\ge0\forall x,y\\\left(y+5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y-2\right)^2+\left(y+5\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-5\end{cases}}\)

Vậy x = 7 ; y = -5

19 tháng 9 2019

\(a,4x^2+9y^2+4x-24y+17=0\)

\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)

\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)

\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)

9 tháng 11 2022

loading...  giúp mình với chiều thì rồi

18 tháng 2 2024

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12 2024

3x + 9xy - 6y
 

 

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

1 tháng 3 2020

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)