Tìm x biết: 2|3-2x|+x=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$
$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$
$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$
$\Leftrightarrow 13x+15=2$
$\Leftrightarrow 13x=2-15=-13$
$\Leftrightarrow x=-13:13=-1$
Bài 2:
$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:
$(y+4)y=5$
$\Leftrightarrow y^2+4y-5=0$
$\Leftrightarrow (y-1)(y+5)=0$
$\Leftrightarrow y=1$ hoặc $y=-5$
Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$
Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)
\(\Leftrightarrow2x^2-2x-2x^2=-6\)
\(\Leftrightarrow x=3\)
b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: f(x)=-3
<=>x5-2x2+x4-x5+3x2-x4-3+2x=-3
<=>(x5-x5)+(-2x2+3x2)+(x4-x4)+2x-3=-3
<=>x2+2x-3=-3
<=>x2+2x=0
<=>x(x+2)=0
<=>x=0 hoặc x+2=0
<=>x=0 hoặc x=-2
Vậy..........
b)đa thức f(x) có nghiệm
<=>f(x)=0
<=>x2+2x-3=0
<=>x2+3x-x-3=0
<=>x(x+3)-(x+3)=0
<=>(x-1)(x+3)=0
<=>x-1=0 hoặc x+3=0
<=>x=1 hoặc x=-3
Vậy nghiệm của đa thức f(x) là x=-3;x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x(3x+1) – (2x+3)(3x-2) = 12
\(\Leftrightarrow6x^2+2x-\left(6x^2-4x+9x-6\right)=12\)
\(\Leftrightarrow6x^2+2x-6x^2+4x-9x+6=12\)
\(\Leftrightarrow-3x+6=12\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
vậy x = -2
b) (x+2)2 – (x-3)(x+3) = 5
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-9\right)=5\)
\(\Leftrightarrow x^2+4x+4-x^2+9-5=0\)
\(\Leftrightarrow4x+8=0\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Vậy x = -2
2| 3 - 2x | + x = 5 (*)
| 3 - 2x | ≥ 0 <=> 3 - 2x ≥ 0 <=> x ≤ 3/2
Vậy ta xét hai trường hợp sau :
1. x ≤ 3/2
(*) <=> 2( 3 - 2x ) + x = 5
<=> 6 - 4x + x = 5
<=> 6 - 3x = 5
<=> 3x = 6 - 5
<=> 3x = 1
<=> x = 1/3 ( tmđk )
2. x > 3/2
(*) <=> 2[ -( 3 - 2x ) ] + x = 5
<=> 2( 2x - 3 ) + x = 5
<=> 4x - 6 + x = 5
<=> 5x - 6 = 5
<=> 5x = 11
<=> x= 11/5 ( tmđk )
Vậy x = 1/3 hoặc x = 11/5
Ta có: \(2.\left|3-2x\right|+x=5\)
Vì \(\left|a\right|=\left|-a\right|\)\(\Rightarrow\)\(\left|3-2x\right|=\left|2x-3\right|\)
+ Với \(x\ge\frac{3}{2}\)\(\Rightarrow\)\(2x-3\ge0\)\(\Rightarrow\)\(\left|2x-3\right|=2x-3\)
Ta có: \(2.\left(2x-3\right)+x=5\)
\(\Leftrightarrow4x-6+x=5\)
\(\Leftrightarrow5x=11\)
\(\Leftrightarrow x=\frac{11}{5}\left(TM\right)\)
+ Với \(x< \frac{3}{2}\)\(\Rightarrow\)\(2x-3< 0\)\(\Rightarrow\)\(\left|2x-3\right|=3-2x\)
Ta có: \(2.\left(3-2x\right)+x=5\)
\(\Leftrightarrow6-4x+x=5\)
\(\Leftrightarrow-3x=-1\)
\(\Leftrightarrow x=\frac{1}{3}\left(L\right)\)
* Thử lại: \(x=\frac{11}{5}\)vào đa thức ( ** ), ta có:
\(VT=2.\left|3-2.\frac{11}{5}\right|+\frac{11}{5}\)
\(=2.\left|\frac{15-22}{5}\right|+\frac{11}{5}\)
\(=2.\frac{7}{5}+\frac{11}{5}\)
\(=\frac{14+11}{5}\)
\(=\frac{25}{5}=5=VP\)
Vậy \(x=\frac{11}{5}\)