Rút gọn :
( \(2-\sqrt{3}\)) . (\(\sqrt{6}+\sqrt{2}\)) . ( \(\sqrt{2+\sqrt{3}}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\sqrt{3+2\sqrt{2}}-\sqrt{6+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{3+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}+3}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2+2\sqrt{3}\left(\sqrt{2}+1\right)+3}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}+1+\sqrt{3}\right)^2}\)
= \(\left|\sqrt{2}+1\right|-\left|\sqrt{2}+\sqrt{3}+1\right|\)
= \(\sqrt{2}+1-\sqrt{2}-\sqrt{3}-1\)
= \(-\sqrt{3}\)
\(a,\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}\left(2+\sqrt{6}\right)+\sqrt{3}\left(2-\sqrt{6}\right)}{\left(2-\sqrt{6}\right)\left(2+\sqrt{2}\right)}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{4-6}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{2}.\sqrt{3}}.\dfrac{4\sqrt{3}}{-2}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}-1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+\left(\sqrt{2}-\sqrt{3}-1\right)\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+2+\sqrt{6}-\sqrt{6}-3-\sqrt{2}-\sqrt{3}}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{-2}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=-\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
Lời giải:
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{(\sqrt{3}+1)^2}}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{3-(\sqrt{3}+1)}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{(\sqrt{3}-1)^2}}=\sqrt{6+2(\sqrt{3}-1)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
1: =3+căn 2-3+căn 2
=2căn 2
2: =(căn 3-2)(căn 3+2)
=3-4=-1
a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)
\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)
\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)
=căn 2+1+căn 2-1=2căn 2
b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)
bạn ơi cho mình hỏi câu b chi tiết hơn đước ko ạ
mình chưa hiểu lắm
Đặt \(A=\sqrt[3]{4-2\sqrt{6}}+\sqrt[3]{4+2\sqrt{6}}\)
\(\Rightarrow A^3=4-2\sqrt{6}+4+2\sqrt{6}+3\left(\sqrt[3]{4+2\sqrt{6}}+\sqrt[3]{4-2\sqrt{6}}\right)\sqrt[3]{4+2\sqrt{6}}\sqrt[3]{4-2\sqrt{6}}=8-6A\)
\(\Rightarrow A^3+6A-8=0\).
Giải pt bậc 3 này ta được \(A\approx1,107\).
P/s: Bài này có vấn đề vì pt bậc 3 này muốn giải dc phải dùng công thức nghiệm?
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2\left(2+\sqrt{3}\right)}\)
\(=\left(2\sqrt{3}+2-3-\sqrt{3}\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{3+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)|\sqrt{3}+1|\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}\right)^2-1^2\)
\(=3-1\)
\(=2\)