(8 mũ 2017 : 8 mũ 2015).(8 mũ 2140:8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-82x+2x+1+2x+2+...+2x+2015=22019−8
\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8⇔2x(1+2+22+...+22015)=22019−8 (1)
Đặt : A=1+2+2^2+...+2^{2015}A=1+2+22+...+22015
\Rightarrow2A=2+2^2+2^3+...+2^{2016}⇒2A=2+22+23+...+22016
\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)⇒2A−A=(2+22+23+...+22016)−(1+2+22+...+22015)
\Rightarrow A=2^{2016}-1⇒A=22016−1
Khi đó (1) trở thành :
2^x\left(2^{2016}-1\right)=2^{2019}-2^32x(22016−1)=22019−23
\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)⇔2x(22016−1)=23(22016−1)
\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)⇔2x=23(22016−1=0)
\Leftrightarrow x=3⇔x=3
Vậy : x=3x=3
2x+2x+1+...+2x+2015=22019−82�+2�+1+...+2�+2015=22019-8
→2x.1+2x.2+....+2x.22015=22019−8→2�.1+2�.2+....+2�.22015=22019-8
→2x.(1+2+...+22015)=22019−8→2�.(1+2+...+22015)=22019-8
Đặt:
A=1+2+...+22015�=1+2+...+22015
2A=2.(1+2+...+22015)2�=2.(1+2+...+22015)
2A=2+22+...+220162�=2+22+...+22016
2A−A=(2+22+...+22016)−(1+2+...+22015)2�-�=(2+22+...+22016)-(1+2+...+22015)
A=2+22+...+22016−1−2−...−22015�=2+22+...+22016-1-2-...-22015
A=22016−1�=22016-1
Nên:
2x.(1+2+...+22015)=22019−82�.(1+2+...+22015)=22019-8
→2x.(22016−1)=22019−8→2�.(22016-1)=22019-8
→2x=(22019−8):(22016−1)→2�=(22019-8):(22016-1)
→2x=22019−822016−1→2�=22019-822016-1
→2x=23.(22016−1)22016−1→2�=23.(22016-1)22016-1
→2x=23→2�=23
→x=3→�=3
Vậy x=3.
a,(-67.77) - (-67.44) - 77.44+77.67
= (-67).(77-44)-77.(44+67)
= (-67-77).(77-44+44+67)
=-144.144
=-20736
b,[-36:(-12)]-12.8+63-1
=3-12.8+216-1
=3-96+216-1
=122
A = 4 + 44 + 47 + ... + 431
43A = 43.(4 + 44 + 47 + ... + 431)
64A = 44 + 47 + 410 + ... + 434
64A - A = (44 + 47 + ... + 434) - (4 + 44 + ... + 431)
63A = 434 - 4
=> A = \(\frac{4^{34}-4}{63}\)
Trả lời :
\(\left(8^{2017}:8^{2015}\right).\left(8^{2140}:8\right)\)
\(=8^2.8^{2139}\)
\(=8^{2141}\)
Học tốt
\(\left(8^{2017}:8^{2015}\right)\cdot\left(8^{2140}:8\right)\)
\(=8^2\cdot8^{2139}\)
\(=8^{2141}\)