Bài1 :câu 3 : x+2 > x-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11
a , x+6=49-3-13
x+6=a
x=a-6
x=n
b,231-(x-6)=n
x-6=231-n
x-6=a
x=a+6
x=m
B1:
a)49-3.(x+6)=13
3.(x+6)=49-13
3.(x+6)=36
x+6=36/3
x+6=12
x=12-6
x=6
\(\left(\dfrac{6:\dfrac{3}{5}-\dfrac{17}{16}.\dfrac{6}{7}}{\dfrac{21}{5}.\dfrac{10}{11}+\dfrac{57}{11}}-\dfrac{\left(\dfrac{3}{20}+\dfrac{1}{2}-\dfrac{1}{15}\right).\dfrac{12}{49}}{\dfrac{10}{3}+\dfrac{2}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{\dfrac{509}{56}}{9}-\dfrac{\dfrac{7}{12}.\dfrac{12}{49}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{\dfrac{1}{7}}{\dfrac{32}{9}}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\left(\dfrac{509}{504}-\dfrac{9}{224}\right).x=\dfrac{215}{96}\)
\(\Rightarrow\dfrac{1955}{2016}.x=\dfrac{215}{96}\)
\(\Rightarrow x=\dfrac{215}{96}:\dfrac{1955}{2016}\)
\(\Rightarrow x=\dfrac{903}{391}\)
`[ 6 : 3/5 - 17/16 . 6/7 : 21/5 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 : 10/3 + 2/9 ] . x = 215/96`
`=>[ 6 . 5/3 - 17/16 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=>[10- 51/56 . 6/7 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 153/196 . 5/21 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 255/1372 . 10/11 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> [10- 1275/7546 + 57/11 - (3/20 + 1/2 - 1/15) . 12/49 . 3/10 + 2/9 ] . x = 215/96`
`=> (10- 1275/7546 + 57/11 - 7/12. 12/49 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/600 . 3/10 + 2/9 ) . x = 215/96`
`=> ( 10- 1275/7546 + 57/11 -343/2000 + 2/9 ) . x = 215/96`
`=>15,06357671 . x= 215/96`
`=> x= 215/96: 15,06357671`
`=>x= 0,1486754027`
Đề có phải như vậy không nhỉ ?
a, 2^x=8^4/16^3
<=> 2^x = (2^3)^4 / (2^4)^3
<=> 2^x = 2^12 / 2^12
<=> 2^x = 1
<=> 2^x = 2^0
<=> x = 0
Vậy x = 0
b,2^x=2^6/4^3
<=> 2^x = 2^6 / (2^2)^3
<=> 2^x = 2^6 / 2^6
<=> 2^x = 1
<=> 2^x = 2^0
<=> x = 0
Vậy x = 0
\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)
b, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)
c, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)
d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)
\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)
Bài 1.
\(a,\left(2^4\cdot3\cdot5^2\right):\left\{450:\left[450-\left(4\cdot5^3-2^3\cdot5^2\right)\right]\right\}\)
\(=\left(16\cdot3\cdot25\right):\left\{450:\left[450- \left(4\cdot125-8\cdot25\right)\right]\right\}\)
\(=\left(48\cdot25\right):\left\{450:\left[450-\left(500-200\right)\right]\right\}\)
\(=1200:\left[450:\left(450-300\right)\right]\)
\(=1200:\left(450:150\right)\)
\(=1200:3\)
\(=400\)
\(---\)
\(b,3^3\cdot5^2-20\left\{90-\left[164-2\cdot\left(7^8:7^6+7^0\right)\right]\right\}\)
\(=27\cdot25-20\left\{90-\left[164-2\cdot\left(7^2+1\right)\right]\right\}\)
\(=675-20\left\{90-\left[164-2\cdot\left(49+1\right)\right]\right\}\)
\(=675-20\left[90-\left(164-2\cdot50\right)\right]\)
\(=675-20\left[90-\left(164-100\right)\right]\)
\(=675-20\left(90-64\right)\)
\(=675-20\cdot26\)
\(=675-520\)
\(=155\)
\(---\)
\(c,\left[\left(18^7:18^6-17\right)\cdot2022-1986\right]\cdot5\cdot1^{2022}-13^2\cdot2020^0\)
\(=\left[\left(18-17\right)\cdot2022-1986\right]\cdot5\cdot1-169\cdot1\)
\(=\left(1\cdot2022-1986\right)\cdot5-169\)
\(=\left(2022-1986\right)\cdot5-169\)
\(=36\cdot5-169\)
\(=180-169\)
\(=11\)
Bài 2.
\(a) (2^x+1)^2+3\cdot(2^2+1)=2^2\cdot10\\\Rightarrow (2^x+1)^2+3\cdot(4+1)=4\cdot10\\\Rightarrow (2^x+1)^2+3\cdot5=40\\\Rightarrow (2^x+1)^2+15=40\\\Rightarrow (2^x+1)^2=40-15\\\Rightarrow (2^x+1)^2=25\\\Rightarrow (2^x+1)^2= (\pm 5)^2\\\Rightarrow \left[\begin{array}{} 2^x+1=5\\ 2^x+1=-5 \end{array} \right.\\ \Rightarrow \left[\begin{array}{} 2^x=4\\ 2^x=-6 (vô.lí) \end{array} \right. \\ \Rightarrow 2^x=2^2\\\Rightarrow x=2\)
Vậy \(x=2\).
\(---\)
\(b)3\cdot(x-7)+2\cdot(x+5)=41\\\Rightarrow 3\cdot x+3\cdot(-7)+2\cdot x+2\cdot5=41\\\Rightarrow 3x-21+2x+10=41\\\Rightarrow (3x+2x)+(-21+10)=41\\\Rightarrow 5x-11=41\\\Rightarrow 5x=41+11\\\Rightarrow 5x=52\\\Rightarrow x=\dfrac{52}{5}\)
Vậy \(x=\dfrac{52}{5}\).
\(Toru\)
Đề sai :)
\(x+2>x-6\)
\(x-x>-2-6\)
\(0>-8\left(llđ\right)\)
Vậy \(\forall x\in R\) thì \(x+2>x-6\)