a) \(\frac{x}{7}=\frac{y}{13}\)và x+y=40 b)\(\frac{x}{19}=\frac{y}{21}\)và 2x-y=34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
Suy ra :
+) \(\frac{x}{7}=2\Leftrightarrow x=14\)
+) \(\frac{y}{13}=2\Leftrightarrow y=26\)
Vậy x = 14 ; y = 26
b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Suy ra :
+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)
+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)
Vậy x = - 51 ; y = - 9
c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Suy ra :
+) \(\frac{x}{19}=2\Leftrightarrow x=38\)
+) \(\frac{y}{21}=2\Leftrightarrow y=42\)
Vậy x = 38 ; y = 42
d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)
Vậy x =\(\pm\)6 ; y =\(\pm\)8
a,AD t/c DTS bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)
b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
AD t/c DTS bằng nhua ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)
c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
AD t/c DTS bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)
d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k;y^2=16k\)
\(\Rightarrow x^2+y^2=9k+16k=25k=100\)
\(\Rightarrow k=4\)
\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
1. Tìm x,y biết
a):\(\frac{x}{9}=\frac{13}{6}\Rightarrow6x=13.9\Rightarrow6x=117\Rightarrow x=\frac{117}{6}=\frac{39}{2}\)
b)\(\frac{17}{x}=\frac{51}{57}\Rightarrow51x=17.57\Rightarrow51x=969\Rightarrow x=\frac{969}{51}=19\)
c)\(\frac{x+2}{3}=\frac{4}{9}\Rightarrow9\left(x+2\right)=3.4\Rightarrow9x+18=12\)
\(\Rightarrow9x=12-18\Rightarrow9x=-6\Rightarrow x=\frac{-6}{9}=\frac{-2}{3}\)
d)\(\frac{x+1}{5}=\frac{125}{\left(x+1\right)^2}\Rightarrow5.125=\left(x+1\right)\left(x+1\right)^2\)
\(\Rightarrow5^4=\left(x+1\right)^3\)
2.Lập tỉ lệ thức:
a) Từ 4 số trên, ta có đẳng thức sau: \(2.14=7.4\)
Vậy, các tỉ lệ thức lập được là: \(\frac{2}{7}=\frac{4}{14};\frac{7}{2}=\frac{14}{4};\frac{2}{4}=\frac{7}{14};\frac{4}{2}=\frac{14}{7}\)
b) Từ 4 số trên, ta có đẳng thức sau: \(4.12=6.8\)
Vậy, các tỉ lệ thức lập được là: \(\frac{4}{6}=\frac{8}{12};\frac{6}{4}=\frac{12}{8};\frac{4}{8}=\frac{6}{12};\frac{8}{4}=\frac{12}{6}\)
a)Vì \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}\Rightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}}\)
b)Vì x + y + z =18
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=2\\\frac{y}{3}=2\\\frac{z}{4}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
c)\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x.2^3=144\)
\(\Leftrightarrow2^x.\left(2^3+1\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16=2^4\)
Vậy x=4
a) \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}\)
Áp dụng tính chất dãy tỉ số bằng nhau. ta có:
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Từ \(\frac{x}{19}=2\Rightarrow x=2.19=38\)
\(\frac{y}{21}=2\Rightarrow y=2.21=42\)
Vậy x = 38 ; y=42
c) \(2^x+2^{x+3}=144\)
\(\Rightarrow2^x+2^x\times2^3=144\)
\(\Rightarrow2^x.\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144\div9=16=2^4\)
\(\Rightarrow x=4\)
Vậy x = 4
Vì \(\frac{x}{19}=\frac{y}{21}\)
\(\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chấy của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.19=38\\y=2.21=42\end{cases}}\)
Vậy ...
Ta có
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Ap dụng tính chất DTSBN ta có
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(+\frac{x}{19}=2\Rightarrow x=38\)
\(+\frac{y}{21}=2\Rightarrow y=42\)
a) Cách 1: Từ \(13x=7y\) suy ra \(\frac{x}{7}=\frac{y}{13}\). Theo tính chất của dãy các tỉ số bằng nhau ta có: \(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\).
Từ đó ta được: \(x=7.2=12;y=13.2=26\).
Cách 2: Đặt \(\frac{x}{7}=\frac{y}{13}=k\) ta có: \(x=7k,y=13k\).
Thay vào hệ thức \(x+y=40\) ta được \(7k+13k=40\), suy ra \(k=2.\)
Do đó \(x=7.2=14,y=13.2=26\)
b) Làm tương tự câu a) ta có:
\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)
Từ đó \(x=19.\left(-2\right)=-38,y=21.\left(-2\right)=-42\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a, Áp dụng dãy tỉ số bàng nhau ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(x=14;y=26\)
b, Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{19}=\frac{y}{21}=\frac{2x-y}{2.19-21}=\frac{34}{17}=2\)
\(x=38;y=42\)
áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
x=2.7=14
y=2.13=26
vậy x=14 y=26
áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{19}=\frac{y}{21}=\frac{x}{38}=\frac{y}{21}=\frac{x-y}{38-21}=\frac{34}{17}=2\)
x=2.38=76
y=2.21=42
vậy x=76 y=42