Cho S=1/2+1/3+1/4+...+1/31+1/32 a) chứng minh rằng S>5/2 b) chứng minh rằng S<9/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng) Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6 S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5 =>S > 3/5 (1) S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60) Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng) => S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
Mà \(\left(\frac{1}{31}+...+\frac{1}{40}\right)>\frac{1}{40}\cdot10=\frac{1}{4}\)
Tương tự : \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)>\frac{1}{5}\)
\(\left(\frac{1}{51}+...+\frac{1}{60}\right)>\frac{1}{6}\)
\(S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{3}{5}\)(*1)
Mặt khác:\(\left(\frac{1}{31}+...+\frac{1}{40}\right)< \frac{1}{31}\cdot10=\frac{1}{3}\)
\(\Rightarrow S< \frac{4}{5}\)(*2)
Từ (*1)(*2)= 3/5<S<4/5
Ta có: S = \(\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(\Rightarrow S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (1)
Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)
\(\Rightarrow S< \frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) (2)
Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\) (đpcm)
AI KẾT BN KO!
TIỆN THỂ TK MÌNH LUÔN NHA!
KONOSUBA!!!
AI TK MÌNH MÌNH TK LẠI 3 LẦN.
Ta có:
S=131+132+133+...+160S=131+132+133+...+160
⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14
141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15
151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16
⇒S>14+15+16=3760>35⇒S>14+15+16=3760>35
⇒S>35(1)⇒S>35(1)
Lại có:
S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13
141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14
151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15
⇒S<13+14+15=4760<45⇒S<13+14+15=4760<45
⇒S<45(2)⇒S<45(2)
Từ (1)(1) và (2)(2)
⇒35<S<45⇒35<S<45 (Đpcm)
mình nhằm nha
để gửi lại ,
xin lỗi nhiều
hì
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)