Cho biểu thức A= x4 - 4x3 - 4x2 + 16x trong đó x là một số chẵn. Chứng minh rằng A có thể viết dưới dạng tích của 4 số chẵn liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google
\(A=x^4-4x^3-4x^2+16x\)
\(=x^3\left(x-4\right)-4x\left(x-4\right)\)
\(=\left(x^3-4x\right)\left(x-4\right)\)
\(=x\left(x^2-4\right)\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)
x chẵn nên x - 4; x - 2; x + 2 chẵn
Vậy \(\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)là tích của 4 số chẵn liên tiếp
hay \(x^4-4x^3-4x^2+16x\)là tích của 4 số chẵn liên tiếp (đpcm)