\(\sqrt{2x+2\sqrt{x^2-1}}với\) x lớn hơn hoặc bằng 1 và \(\sqrt{x-1}+\sqrt{x+1}=\sqrt{7}\) các bạn giúp mình rút gọn với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
a)
= \(\sqrt{18-6\sqrt{6}+3}\)
= \(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
= \(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
= \(|3\sqrt{2}-\sqrt{3}|\)
= \(3\sqrt{2}-\sqrt{3}\)
b)
= \(\sqrt{\frac{7}{2}-\sqrt{7}+\frac{1}{2}}\)
= \(\sqrt{\left(\sqrt{\frac{7}{2}}\right)^2+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)
= \(\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}\)
= \(|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}|\)
= \(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\)
c)
= \(\sqrt{3+2\sqrt{3}+1}\)
= \(\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)
= \(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
d)
Đặt t = \(\sqrt{x-1}\left(ĐK:t\ge0\right)\)
= \(\sqrt{t^2+1-2t}\)
= \(\sqrt{\left(t+1\right)^2}\)
\(=t+1\)
= \(\sqrt{x-1}+1\)
\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2\sqrt{9}\sqrt{6}+3}=\sqrt{\left(\sqrt{18}\right)^2-2\sqrt{18}\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}=\sqrt{3}+3\sqrt{2}\)
\(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2}\sqrt{4-\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-1}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{2}}{2}\)
\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Với \(x\ge1\)thì \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}\sqrt{1}+\left(\sqrt{1}\right)^2}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1\)
T đã tốn mấy phút cuộc đời viết lời giải cho bạn r, tiếc j mấy giây mà bấm k cho t ik =))
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}(x \geq 0,x \neq 1\)
`=((2x+1-x+\sqrtx)/(x\sqrtx-1))(((\sqrtx+1)(x-\sqrtx+1))/(\sqrtx+1)-\sqrtx)+(2-2sqrtx)/sqrtx`
`=((x-\sqrtx+1)/((\sqrtx-1))(x+sqrtx+1)))(x-2\sqrtx+1)-(2\sqrtx-2)/sqrtx`
`=(1/(\sqrtx-1))(\sqrtx-1)^2-(2(\sqrtx-1))/sqrtx`
`=\sqrtx-1-(2(\sqrtx-1))/sqrtx`
`=(x-\sqrtx-2\sqrtx+2)/sqrtx`
`=(x-3sqrtx+2)/sqrtx`
1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)
TH1: x>=1
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)
TH2: 1/2<=x<1
\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)
2:
\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)
\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)
\(\sqrt{2x+2\sqrt{x^2-1}}=\sqrt{x+1+2\sqrt{\left(x+1\right)\left(x-1\right)}+x-1}\)
\(=\sqrt{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}=\sqrt{x+1}+\sqrt{x-1}\)
b/ \(\sqrt{x-1}+\sqrt{x+1}=\sqrt{7}\) (ĐKXĐ: ...)
\(\Leftrightarrow2x+2\sqrt{x^2-1}=7\)
\(\Leftrightarrow2\sqrt{x^2-1}=7-2x\) (\(x\le\frac{7}{2}\))
\(\Leftrightarrow4\left(x^2-1\right)=\left(7-2x\right)^2\)
\(\Leftrightarrow28x=53\)
\(\Leftrightarrow x=\frac{53}{28}\)