Tim tat ca cac so nguyen x biet
a) x2 - 3x = 0
b) (IxI - 3)(x2 + 4) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x\right|\le4\)
\(\Rightarrow\left|x\right|\in\left\{1;2;3;4\right\}\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Vậy \(x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\).
b) \(x^2< 20\)
\(\Rightarrow x^2\in\left\{1;4;9;16\right\}\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Vậy \(x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\).
c) (x - 2) (x + 3) < 0
=> x - 2 > 0 và x + 3 < 0 hoặc x - 2 < 0 và x + 3 > 0
=> x > 2 và x < -3 (loại) hoặc x < 2 và x > -3
=> -3 < x < 2
=> x thuộc {-2 ; -1 ; 0 ; 1}
Vậy x thuộc {-2 ; -1 ; 0 ; 1}.
d) (x + 4) (x - 2) = 0
=> x + 4 = 0 hoặc x - 2 = 0
=> x = -4 hoặc x = 2
Vậy x thuộc {-4 ; 2}.
Bg
a) Ta có: |x| < 4 (tất cả đều x \(\inℤ\)nhé)
Mà |x| > 0
=> x = {0; +1; +2; +3; +4}
Vậy...
b) x2 < 20 (x \(\inℤ\))
=> x2 < 42 + 4
=> x2 < 42
Vì x2 > 0
=> -4 < x < 4
=> x = {0; +1; +2; +3; +4}
Vậy...
c) (x - 2)(x + 3) < 0 (x \(\inℤ\))
Vì x + 3 > x - 2
=> x - 2 < 0 và x + 3 > 0
Mà x + 3 - (x - 2) = x + 3 - x + 2 = (x - x) + 3 + 2 = 5
=> x - 2 < 0 và x - 2 + 5 > 0
=> -4 < x - 2 < 0
=> x - 2 = {-4; -3; -2; -1}
=> x = {-2; -1; 0; 1}
Vậy...
d) (x + 4)(x - 2) = 0
=> x + 4 = 0 hoặc x - 2 = 0
=> x = -4 hoặc x = 2
Vậy...
\(\Leftrightarrow x^2-10< 0\)
hay \(-\sqrt{10}< x< \sqrt{10}\)
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
bạn hoshzora này, bạn cuồng anime đến thế cơ à,
nhưng nếu muốn, tôi nghĩ bạn nên đăng cái này lên facebook thì hơn
còn về phần kết quả
các số nguyên x thỏa mãn là : -3;-2;-1;0;1;2;3
tổng sẽ bằng -1-2-3+0+1+2+3=0
f(x) = (m+1)x² - 2(m+1)x + 2m+3
♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R
♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2)
ta biện luận theo dấu của delta':
m│ -∞________ -2 _________ -1 ________ +∞
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈
* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm
* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" )
* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm
* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm
Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2
~~~~~~~~~~
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm
tức là f(x) < 0 với mọi x thuộc R
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm
* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi
{ ∆' < 0
{ m+1 < 0
<=> { m < -2 hoăc m > -1
----- { m < -1
<=> m < -2
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2
a)\(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\Rightarrow x=3\end{cases}}\)
vậy x=0 hoặc x=3
b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|-3>0\\x^2+4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|>3\\x^2>-4\left(ktm\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x>3\\x>-3\end{cases}}\Leftrightarrow x>3}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|-3< 0\\x^2+4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|< 3\\x^2< -4\left(ktm\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< -3\end{cases}}}\Leftrightarrow x< -3\)
vậy....
a, \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\)
TH1 : x = 0 TH2 : x = 3
b, \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3< x< 3\left(tm\right)\\x^2< -4\left(ktm\right)\end{cases}}}\)