So sánh các phân số sau:
a)\(\frac{-17}{243}\)và \(\frac{1}{1965}\) b)\(\frac{23}{-15}\)và \(\frac{-17}{-49}\) c)\(\frac{-2004}{2005}\)và \(\frac{-2005}{2006}\) d)\(\frac{-18}{81}\)và \(\frac{-23}{114}\) e)\(\frac{-22}{35}\)và \(\frac{-103}{177}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mk với, còn nốt mấy câu so sánh này nữa thôi, ai nhanh mk k cho
a)
\(\frac{-17}{243}< 0\)
\(\frac{1}{1965}>0\)
\(\frac{-17}{243}< \frac{1}{1965}\)
b,
\(\frac{23}{-15}< 0\)
\(\frac{-17}{-49}>0\)
\(\frac{23}{-15}< \frac{-17}{-49}\)
c,
\(\frac{-2004}{2005}=-1+\frac{1}{2005}\)
\(\frac{-2005}{2006}=-1+\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)
Nên \(-1+\frac{1}{2005}>-1+\frac{1}{2006}\)
Vậy \(\frac{-2004}{2005}>\frac{-2005}{2006}\)
Bài 1
=1093/2187
Bai 2
số nhỏ nhất trong các số trên là:2007/2008
Bai 3
Ta co :111111/151515=11/15 & 11032/15030=11/15
vì 11/15=11/15 nên 111111/151515=11022=15030
bài 22
111111/151515=11022/15030
bài 15
2004/2005 nhỏ nhất
bài 18
=1093/2187
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
Ta có :
\(B=\frac{2004+2005}{2005+2006}=\frac{2004}{2005+2006}+\frac{2005}{2005+2006}< \frac{2004}{2005}+\frac{2005}{2006}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vây \(A>B\)
Chúc bạn học tốt ~
Ta có : \(2005C=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005D=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
=> 2005.C < 2005.D
=> C < D
Ta có VẾ A
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005\cdot\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005\cdot A=1+\frac{2004}{2005^{2006}+1}\)
Ta lại có Vế B :
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005\cdot\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005\cdot B=1+\frac{2004}{2005^{2005}+1}\)
Nhìn vào trên , suy ra A < B .
\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2014}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2014}{2005^{2005}+1}=1+\frac{2014}{2005^{2005}+1}\)Ta thấy \(2005^{2006}+1>2005^{2005}+1\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow A< B\)
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\) và \(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
So sánh A và B
\(2005A=\frac{2005^{2005}+1}{2005^{2006}+1}=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}}\) \(=\frac{2005^{2006}+2014+1}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005B=\frac{2005^{2004}+1}{2005^{2005}+1}=\frac{2005.\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(=\frac{2005^{2005}+2004+1}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Vì \(2005^{2006}+1>2005^{2005}+1\)
Nên \(1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
Hay A < B
Vậy A < B
sửa chỗ \(\frac{2005^{2006}+2014+1}{2005^{2006}+1}\) thành \(\frac{2005^{2006}+2004+1}{2005^{2006}+1}\)nhé
a) \(\frac{-18}{81}\) và \(\frac{-23}{114}\)
Ta có:
b) \(\frac{-22}{35}\) và \(\frac{-103}{177}\)
Ta có:
câu a b c trên của mình đâu rồi