K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Đề bài đâu bn ơi 

Nếu rút gọn thì mình làm cho

Ta có: \(P=\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\frac{1-\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\)         (    ĐKXĐ: \(x\ge1\))

    \(\Leftrightarrow P=\left(\frac{1-x}{\sqrt{x}}\right):\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)+\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}+1\right)}\right)\)

    \(\Leftrightarrow P=\frac{1-x}{\sqrt{x}}.\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{1-x+\sqrt{x}-1}\)

    \(\Leftrightarrow P=\left(1-x\right).\frac{\sqrt{x}+1}{\sqrt{x}-x}\)

    \(\Leftrightarrow P=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right).\frac{\sqrt{x}+1}{\sqrt{x}.\left(1-\sqrt{x}\right)}\)

   \(\Leftrightarrow P=\frac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)

   \(\Leftrightarrow P=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)

31 tháng 8 2020

P=\(\frac{1-x}{\sqrt{x}}:\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{1-x}{\sqrt{x}}:\frac{1-x+x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

P=\(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-\sqrt{x}}\)

P=\(\left(\sqrt{x}+1\right)^2\)

P=\(x+2\sqrt{x}+1\)

20 tháng 10 2023

a: \(P=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\)

\(=\dfrac{1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-2}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b: P=1/4

=>\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\)

=>\(4\left(\sqrt{x}-2\right)=3\sqrt{x}\)

=>\(4\sqrt{x}-8-3\sqrt{x}=0\)

=>\(\sqrt{x}=8\)

=>x=64

c: Khi \(x=4+2\sqrt{3}\) thì \(P=\dfrac{\sqrt{4+2\sqrt{3}}-2}{3\cdot\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{2-\sqrt{3}}{3}\)

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

5 tháng 7 2019
https://i.imgur.com/QGWm1Am.jpg