Phân tích các đa thức sau thành nhân tử
a) \(8a^2xy-18b^2xy\)
b) \(32a^2b^2-4\)
c) \(x^2-49z^2-4xy+4y^2\)
d) \(3x^2+6x+3-3y^2\)
e) \(12x^2y-12y^3+36xy+27y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)
e) Ta có: \(a^3-a^2-a+1\)
\(=a^2\left(a-1\right)-\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2-1\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)\)
f) Ta có: \(x^3-2xy-x^2y+2y^2\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
d) Đề sai ko ???
e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)
f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
a) \(8a^2xy-18b^2xy=2xy\left(4a^2-9b^2\right)=2xy\left(2a-3b\right)\left(2a+3b\right)\)
b) \(32a^2b^2-4=4\left(8a^2b^2-1\right)\)
c) \(x^2-49z^2-4xy+4y^2=\left(x^2-4xy+4y^2\right)-49z^2\)
\(=\left(x-2y\right)^2-\left(7z\right)^2=\left(x-2y+7z\right)\left(x-2y-7z\right)\)
d) \(3x^2+6x+3-3y^2=3\left(x^2+2x+1-y^2\right)=3.\left[\left(x+1\right)^2-y^2\right]\)
\(=3\left(x-y+1\right)\left(x+y+1\right)\)
e) \(12x^2y-12y^3+36xy+27y=3y\left(4x^2-4y^2+12x+9\right)\)
\(=3y\left[\left(4x^2+12x+9\right)-4y^2\right]=3y\left[\left(2x+3\right)^2-\left(2y\right)^2\right]\)
\(=3y\left(2x-2y+3\right)\left(2x+2y+3\right)\)
a) 8a2xy - 18b2xy
= 2xy( 4a2 - 9b2 )
= 2xy( [ ( 2a )2 - ( 3b )2 ]
= 2xy( 2a - 3b )( 2a + 3b )
b) 32a2b2 - 4
= 4( 8a2b2 - 1 )
c) x2 - 49z2 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 49z2
= ( x - 2y )2 - ( 7z )2
= ( x - 2y - 7z )( x - 2y + 7z )
d) 3x2 + 6x + 3 - 3y2
= 3( x2 + 2x + 1 - y2 )
= 3[ ( x2 + 2x + 1 ) - y2 ]
= 3[ ( x + 1 )2 - y2 ]
= 3( x - y + 1 )( x + y + 1 )
e) 12x2y - 12y3 + 36xy + 27y
= 3y( 4x2 - 4y2 + 12x + 9 )
= 3y[ ( 4x2 + 12x + 9 ) - 4y2 ]
= 3y[ ( 2x + 3 )2 - ( 2y )2 ]
= 3y( 2x - 2y + 3 )( 2x + 2y + 3 )