1. Tập hợp tất cả các nghiệm thuộc [-pi;pi] của pt 2sin^2x + 2sin2x=3-3cos^2x là
2. Phương trình 2cos^x-3√3sin2x-4sin^2=-4 có số nghiệm thuộc (0;2pi) là ?
Giúp mik/em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sinx-\sqrt{3}cosx=1\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{-\dfrac{5\pi}{6};\dfrac{\pi}{2}\right\}\)
Đặt \(t=tan\dfrac{x}{2}\Rightarrow\left\{{}\begin{matrix}t\in\left[0;1\right]\\sinx=\dfrac{2t}{1+t^2}\\cosx=\dfrac{1-t^2}{1+t^2}\end{matrix}\right.\)
Pt trở thành: \(\dfrac{m.2t}{1+t^2}+\dfrac{1-t^2}{1+t^2}=1\)
\(\Leftrightarrow2mt+1-t^2=1+t^2\)
\(\Leftrightarrow2mt-2t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=m\end{matrix}\right.\)
\(\Rightarrow\) Để pt có 2 nghiệm thuộc đoạn đã cho thì \(0< m\le1\)
a)Tập hợp con của M là:
{1};{2};{3};{4};{5}
b)Các tập hợp X là:
X={1;2;3}
X={2;3;1}
X={3;2;1}
k mk nha mk đang âm điểm
dễ mà
giúp tớ nhé ,tớ mới bị từ 290
ai giúp mình mình giúp lại
cảm ơn trước
2.
Chắc đề là \(2cos^2x-3\sqrt{3}sin2x-4sin^2x=-4\)
\(\Leftrightarrow2cos^2x-6\sqrt{3}sinx.cosx+4\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2cos^2x-6\sqrt{3}sinx.cosx+4cos^2x=0\)
\(\Leftrightarrow6cos^2x-6\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow6cosx\left(cosx-\sqrt{3}sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Các nghiệm thuộc đoạn đã cho: \(\left\{\frac{\pi}{2};\frac{3\pi}{2};\frac{\pi}{6};\frac{7\pi}{6}\right\}\) có 4 nghiệm thỏa mãn
1.
\(2sin^2x+4sinx.cosx=3-3cos^2x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(\Rightarrow2tan^2x+4tanx=3\left(1+tan^2x\right)-3\)
\(\Leftrightarrow2tan^2x+4tanx=3tan^2x\)
\(\Leftrightarrow tan^2x-4tanx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(4\right)+k\pi\end{matrix}\right.\)
Các nghiệm thỏa mãn là: \(\left\{-\pi;0;\pi;arctan\left(4\right)-\pi;arctan\left(4\right)\right\}\)
Có 5 nghiệm trên đoạn đã cho