K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$

Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$

$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$

$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.

9 tháng 4 2020

a,Để biểu thức A=n+2/n+3 là phân số

<=>n+3 khác 0 và n thuộc Z (bạn viết kí hiệu nha!!!)

<=>n khác -3 và n thuộc Z

Vậy,....

b,+Với n thuộc Z để phân số A=n+2/n+3 có giá trị là một số nguyên thì n+2 chia hết cho n+3(1) ( bạn viết kí hiệu nha)

   +Vì n thuộc Z

   =>n+3 chia hết cho n+3(2)

Từ (1) và (2)

=>(n+3)-(n+2) chia hết cho n+3

=>n+3-n-2 chia hết cho n+3

=>1 chia hết cho n+3

=>n+3 thuộc Ư(1)

Mà Ư(1)=(-1;1)

nên n+3 thuộc -1 và 1

+Với n+3= -1                               +Với n+3=1

             n=(-1)-3                                       n=1-3

             n= -4 thuộc Z                             n= -2 thuộc Z

+Thử lại:  (bạn tự thử lại nha)

Vậy.....

Bạn nhớ k đúng cho mik nha!!

Chúc bạn hok tốt!!

12 tháng 4 2018

Để 3n-2/n+3 là số nguyên thì 3n-2 phải chia hết cho n+3​

​Ta có : 3n+9-3n+2 chia hết cho n+3 => 11 chia hết cho n+3 <=>n+3 =1 hoặc 11<=>n=4 hoặc 14

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

17 tháng 2 2020

Ta có: \(n^5-n+2=n\left(n^4-1\right)+2\)

\(=n\left(n^2+1\right)\left(n^2-1\right)+2\)

\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)

Ta có n - 1; n; n + 1 là 3 số tự nhiên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)⋮3\)

Suy ra \(\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)chia 3 dư 2.

Mà ta có: Số chính phương chia 3 dư 0 hoặc 1

Thật vậy: +) Nếu m = 3k thì \(m^2=9k^2⋮3\)(chia 3 dư 0)

                +) Nếu m = 3k + 1 thì \(m^2=9k^2+6k+1\)(chia 3 dư 1)

                +) Nếu m = 3k + 2 thì \(m^2=9k^2+12k+4\)(chia 3 dư 1)

Vậy không có số nguyên dương n để n5 - n + 2 là số chính phương.

17 tháng 7 2016

Đặt \(A=n^2-4n+7\) .

1. Với n = 0 => A = 7 không là số chính phương (loại)

2. Với n = 1 => A = 4 là số chính phương (nhận)

3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)

\(\Rightarrow\left(n-2\right)^2< A< n^2\)

Vì A là số tự nhiên nên  \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)

Thử lại, n = 3 => A = 4 là một số chính phương.

Vậy : n = 1 và n = 3 thoả mãn đề bài .

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.