Tìm số nguyên dương n để biểu thức n^5 -n+2 là sô chính phương
Giúp mình với mình đang cần gấp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Để biểu thức A=n+2/n+3 là phân số
<=>n+3 khác 0 và n thuộc Z (bạn viết kí hiệu nha!!!)
<=>n khác -3 và n thuộc Z
Vậy,....
b,+Với n thuộc Z để phân số A=n+2/n+3 có giá trị là một số nguyên thì n+2 chia hết cho n+3(1) ( bạn viết kí hiệu nha)
+Vì n thuộc Z
=>n+3 chia hết cho n+3(2)
Từ (1) và (2)
=>(n+3)-(n+2) chia hết cho n+3
=>n+3-n-2 chia hết cho n+3
=>1 chia hết cho n+3
=>n+3 thuộc Ư(1)
Mà Ư(1)=(-1;1)
nên n+3 thuộc -1 và 1
+Với n+3= -1 +Với n+3=1
n=(-1)-3 n=1-3
n= -4 thuộc Z n= -2 thuộc Z
+Thử lại: (bạn tự thử lại nha)
Vậy.....
Bạn nhớ k đúng cho mik nha!!
Chúc bạn hok tốt!!
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.
Ta có: \(n^5-n+2=n\left(n^4-1\right)+2\)
\(=n\left(n^2+1\right)\left(n^2-1\right)+2\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)
Ta có n - 1; n; n + 1 là 3 số tự nhiên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)⋮3\)
Suy ra \(\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)chia 3 dư 2.
Mà ta có: Số chính phương chia 3 dư 0 hoặc 1
Thật vậy: +) Nếu m = 3k thì \(m^2=9k^2⋮3\)(chia 3 dư 0)
+) Nếu m = 3k + 1 thì \(m^2=9k^2+6k+1\)(chia 3 dư 1)
+) Nếu m = 3k + 2 thì \(m^2=9k^2+12k+4\)(chia 3 dư 1)
Vậy không có số nguyên dương n để n5 - n + 2 là số chính phương.
Đặt \(A=n^2-4n+7\) .
1. Với n = 0 => A = 7 không là số chính phương (loại)
2. Với n = 1 => A = 4 là số chính phương (nhận)
3. Với n > 1 , ta xét khoảng sau : \(n^2-4n+4< n^2-4n+7< n^2\)
\(\Rightarrow\left(n-2\right)^2< A< n^2\)
Vì A là số tự nhiên nên \(A=\left(n-1\right)^2\Leftrightarrow n^2-4n+7=n^2-2n+1\Leftrightarrow2n=6\Leftrightarrow n=3\)
Thử lại, n = 3 => A = 4 là một số chính phương.
Vậy : n = 1 và n = 3 thoả mãn đề bài .
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.