K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

\(A=a+\frac{1}{b\left(a-b\right)^2}=\frac{\left(a-b\right)}{2}+\frac{\left(a-b\right)}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\)

( cô si ) 

7 tháng 4 2020

Có \(a+\frac{1}{b\left(a-b\right)^2}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\)

Áp dụng BĐT Cosi cho 4 số ta có:

\(\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{a-b}{2}\cdot\frac{a-b}{2}\cdot b\cdot\frac{1}{b\left(a-b\right)^2}}\)

\(=4\cdot\sqrt[4]{\frac{1}{4}}=1\cdot\frac{\sqrt{1}}{2}=2\sqrt{2}\)

\(\Rightarrow a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)

Dấu "=" xảy ra khi \(\frac{a-b}{2}=b\)

\(\Leftrightarrow\frac{a}{2}=\frac{3b}{2}\Leftrightarrow a=3b\)

Cách giải: Linh Vy. Trình bày: Nhật Quỳnh

NV
29 tháng 2 2020

\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)

\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:
Do $a>b$ nên $a-b>0$

Áp dụng BĐT AM-GM với các số dương ta có:

\(a+\frac{1}{b(a-b)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b(a-b)^2}\geq 4\sqrt[4]{\frac{a-b}{2}.\frac{a-b}{2}.b.\frac{1}{b(a-b)^2}}\)

\(=4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\) (đpcm)

Dấu "=" xảy ra khi \(\frac{a-b}{2}=b=\frac{1}{b(a-b)^2}\Leftrightarrow a=3\sqrt{\frac{1}{2}}; b=\sqrt{\frac{1}{2}}\)

NV
1 tháng 3 2020

Bạn tham khảo:

Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến

23 tháng 2 2019

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)

\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)

<=> Sai đề