Làm tính chia
a) 22x^4 y^2 z : 5x^2 y
b) x^6 y^7 z t : x^6 y^7
c) (-5x)^3 y^2 z^2 : 15 x^3 y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{5}=\frac{y}{3};\frac{y}{2}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
Theo tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow x=2\times10=20\)
\(y=2\times6=12\)
\(z=2\times21=42\)
Vậy x = 20; y = 12 ; z = 42
b) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-y}{5-4}=\frac{-6}{1}=-6\)
\(\Rightarrow x=\left(-6\right)\times3=-18\)
\(y=\left(-6\right)\times4=-24\)
\(z=\left(-6\right)\times5=-30\)
Vậy x = -18; y = -24; z = -30
\(A=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z\right)\left[\left(x-y+z\right)+2\left(y-z\right)\right]+\left(z-y\right)^2=\left(x-y+z\right)\left[x+y-z\right]+\left(z-y\right)^2\)\(A=x^2-\left(y-z\right)^2+\left(z-y\right)^2=x^2\)
\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)
\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)
\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)
=x+y-z
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
Câu a bạn Nguyễn Thị Anh đã trả lời, mình trả lời câu c.
b) Câu này bạn ghi sai đề rồi!
c) Ta có: x/3 = y/4 => x/15 = y/20
y/5 = z/7 => y/20 = z/28
=> x/15 = y/20 = z/28
Áp dụng tính chất dãy tỉ số bằng nhau:
=> x/15 = y/20 = z/28 = 2x/30 = 3y/60 = 2x + 3y - z / 30 + 60 - 28 = 186/62 = 3
x/15 = 3 => x = 15 . 3 = 45
y/20 = 3 => y = 20 . 3 = 60
z/28 = 3 => z = 28 . 3 = 84
Vậy x = 45; y = 60; z = 84.