Cho ΔABC, ∠A=90°,AH⊥BC
CMR: a) AB2 = BH.BC ; AC2 = CH.BC
b) AH2 = BH.HC
c) AH.BC = AB.AC
d) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
GIÚP MK VỚI Ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Diện tích của Δ ABC là:
\(\dfrac{1}{2}\) . 6 . 8 = 24 cm2
b. Ta có: Δ ABC vuông tại A
Theo đ/lí Py - ta - go
BC2 = AB2 + AC2
BC2 = 62 + 82
BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Vì AD là tia phân giác của \(\widehat{A}\)
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Rightarrow\) \(\dfrac{6}{8}\) = \(\dfrac{DB}{10-DB}\)
\(\Rightarrow\) \(\dfrac{3}{4}=\dfrac{DB}{10-DB}\)
\(\Rightarrow\) 3 . (10 - DB) = 4DB
\(\Rightarrow\) 30 - 3DB - 4DB = 0
\(\Rightarrow\) 30 - 7DB = 0
\(\Rightarrow\) DB = \(\dfrac{30}{7}\) \(\approx\) 4,3 cm
Ta có: DC = 10 - DB
\(\Rightarrow\) DC = 10 - 4,3
\(\Rightarrow\) DC = 5,7 cm
c. Xét ΔABC và ΔHBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)
\(\Rightarrow\) AB2 = BH . BC
Vì ΔABC vuông tại A
SΔABC = \(\dfrac{AH.BC}{2}\) = \(\dfrac{AB.AC}{2}\) \(\Rightarrow\) AB . AC
\(\Leftrightarrow\) AH = \(\dfrac{AB.AC}{BC}\) = \(\Leftrightarrow\) \(\dfrac{1}{AH}\) = \(\dfrac{AH}{AB.AC}\)
\(\Leftrightarrow\) \(\dfrac{1}{AB^2}\) = \(\dfrac{BC^2}{AB^2.AC^2}\)
Mặt khác theo đ/lí Py - ta - go:
BC2 = AB2 + AC2
\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{AB^2+AC^2}{AB^2.ÂC^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\)
\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) (dpcm)
nhớ tick cho cj nha
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=AB^2/BC=6^2/10=3,6cm
CH=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AB^2=BH*BC
ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có
\(\widehat{CBA}\) chung
Do đó: ΔCAB\(\sim\)ΔAHB
c: Ta có: ΔCAB\(\sim\)ΔAHB
nên AC/HA=AB/HB=CB/AB
hay \(AB^2=BH\cdot BC\)
BH=3,6cm
=>CH=6,4cm
xét tam giác AHB và tam giác CAB có:
góc H = góc A = 90 độ
góc B chung
=> tam giác AHB ~ tam giác CAB
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC
a: Xét ΔABC vuông tại A và ΔHBA vuông tạiH co
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA=AC/HA
=>BA^2=BH*BC
b: BI là phân giác
=>IA/IH=BA/BH=AC/HA
c: AK là phân giác của góc HAC
=>HK/KC=HA/AC=HI/IA
=>KI//AC