phân tích đa thức thành nhân tử :\(x^2-9x+20\)
nong các bn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\cdot\left(x^2+2x\right)+20=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
\(\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)
\(\left(x^2-3x+2\right)\left(x^2-9x+20\right)-40=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-40\)
\(=\left(x^2-6x+5\right)\left(x^2-6x+8\right)-40\)
Đặt \(t=x^2-6x+5\) thì ta có \(t\left(t+3\right)-40=t^2+3t-40=\left(t+8\right)\left(t-5\right)\)
Suy ra \(\left(x^2-6x+5\right)\left(x^2-6x+8\right)-40=\left(x^2-6x+13\right)\left(x^2-6x\right)=x\left(x-6\right)\left(x^2-6x+13\right)\)
\(=x^3+2x^2-8x=x\left(x^2+2x-8\right)\\ =x\left(x^2-2x+4x-8\right)\\ =x\left(x-2\right)\left(x+4\right)\)
\(4x^3-13x^2+9x-18\)
\(=4x^3-12x^2-x^2+3x+6x-18\)
\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(4x^2-x+6\right)\)
\(1,\)
\(x^2+x-12\)
\(=x^2-3x+4x-12\)
\(=x\left(x-3\right)+4\left(x-3\right)\)
\(=\left(x+4\right)\left(x-3\right)\)
\(2,\)
\(x^2-9x+20\)
\(=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-5\right)\left(x-4\right)\)
\(3,\)
\(x^2+x-20\)
\(=x^2-4x+5x-20\)
\(=x\left(x-4\right)+5\left(x-4\right)\)
\(=\left(x+5\right)\left(x-4\right)\)
\(=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(x-5\right)\)
x2 - 9x + 20
= x2 - 4x - 5x + 20
= x( x - 4 ) - 5( x - 4 )
= ( x - 4 )( x - 5 )