K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

Đề có cho đa thức P(x) không bạn?

4 tháng 10 2021

Vì P(x) chia cho đa thức bậc 2 nên dư là đa thức bậc 1

Gọi đa thức ấy là \(ax+b\)

\(\Leftrightarrow P\left(x\right)=\left(x^2-4x+3\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow P\left(x\right)=\left(x-1\right)\left(x-3\right)\cdot a\left(x\right)+ax+b\)

\(P\left(1\right)=3\Leftrightarrow a+b=3\\ P\left(3\right)=7\Leftrightarrow3a+b=7\)

Từ đó ta có hệ \(\left\{{}\begin{matrix}a+b=3\\3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy đa thức dư là \(2x+1\)

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

25 tháng 12 2015

Gọi đa thức đó là A ta có :

A chia x - 2 dư 5

A chia x - 3 dư 7

=> A chia (x-2)(x-3) dư 5*7 = 35
 

DD
22 tháng 6 2021

Do đa thức chia là \(x^2-4x+3\)là đa thức bậc hai nên đa thức dư là đa thức bậc nhất, có dạng \(ax+b\).

Đặt \(P\left(x\right)=Q\left(x\right)\left(x^2-4x+3\right)+ax+b\)

\(P\left(1\right)=Q\left(1\right)\left(1-4+3\right)+a+b\Leftrightarrow a+b=3\)

\(P\left(3\right)=Q\left(3\right)\left(9-12+3\right)+3a+b\Leftrightarrow3a+b=7\)

Ta có hệ: 

\(\hept{\begin{cases}a+b=3\\3a+b=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\).

Vậy đa thức dư là: \(2x+1\).

15 tháng 1 2021

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

15 tháng 1 2021

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1 

25 tháng 10 2020

1. 2x3 + 4x2 + 5x + 3 

= 2x3 + 2x2 + 2x2 + 2x + 3x + 3

= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )

= ( x + 1 )( 2x2 + 2x + 3 )

=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3

2.a) 2x3 - 3x2 + x + a chia hết cho x + 2

Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1

=> Thương bậc 2

Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c

=> 2x3 - 3x2 + x + a chia hết cho x + 2 

⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )

⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c

⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)

Vậy a = 30

b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21

=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21

⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a

⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)

Vậy a = 6

c) Tí mình gửi link nhé

25 tháng 10 2020

c) https://imgur.com/TzbHKPG

Bạn chịu khó đánh máy tí nhé ;-;