K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 8 2020

Sau ký hiệu sin thứ 2 là gì thế bạn?

12 tháng 7 2018

3sin 2x+cos 2x=2cosx-1

<=>2√3 sinx.cox+cos2x -sin2x -2cosx+cos2x+sin2x=0

<=>2√3sinx.cosx+2cos2x -2cosx=0

<=>cosx(√3sinx+cosx -1)=0

*cosx=0 =>x=pi/2+k.pi

*√3sinx+cosx -1=0

<=>sin(x+pi/6)=1/2 <=>x=...

26 tháng 8 2021

a, cos2x - sin7x = 0

⇔ cos2x = sin7x

⇔ cos2x = cos \(\left(7x-\dfrac{\pi}{2}\right)\)

⇔ \(\left[{}\begin{matrix}7x-\dfrac{\pi}{2}=2x+k2\pi\\7x-\dfrac{\pi}{2}=-2x+k2\pi\end{matrix}\right.\) với k là số nguyên

⇔ \(\left[{}\begin{matrix}x=\dfrac{\pi}{10}+\dfrac{k.2\pi}{5}\\x=\dfrac{\pi}{18}+\dfrac{k2\pi}{9}\end{matrix}\right.\) với k là số nguyên 

27 tháng 8 2021

Giúp mik giải hết b,c luôn đk

NV
22 tháng 11 2019

\(cosx+cos3x+cos2x+cos4x=0\)

\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)

\(\Leftrightarrow cosx.\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=\pi+k2\pi\end{matrix}\right.\)

NV
22 tháng 11 2019

\(sinx+sin7x+sin3x+sin5x=0\)

\(\Leftrightarrow2sin4x.cos3x+2sin4x.cosx=0\)

\(\Leftrightarrow sin4x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow sin4x.cos2x.cosx=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

Lý do chỉ cần 1 pt sin4x=0 do sin4x bao hàm cả cosx và cos2x ở trong đó

NV
10 tháng 9 2021

ĐKXĐ: \(x\ne k\pi\)

\(sin7x=sin^2x+2sinx.cos2x+2sinx.cos4x+2sinx.cos6x\)

\(\Leftrightarrow sin7x=sin^2x+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(\Leftrightarrow sin7x=sin^2x-sinx+sin7x\)

\(\Leftrightarrow sinx\left(sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\sinx=1\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

15 tháng 7 2020

\(\text{c) }sin3x-\sqrt{3}cos3x=2cos5x\\ \Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=cos5x\\ \Leftrightarrow sin\frac{\pi}{6}\cdot sin3x-cos\frac{\pi}{6}\cdot cos3x=cos5x\\ \Leftrightarrow cos\left(3x+\frac{\pi}{6}\right)=-cos5x\\ \Leftrightarrow cos\left(3x+\frac{\pi}{6}\right)=cos\left(\pi-5x\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{6}=\pi-5x+m2\pi\\3x+\frac{\pi}{6}=5x-\pi+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{48}+\frac{m\pi}{4}\\x=\frac{7\pi}{12}-n\pi\end{matrix}\right.\)

\(d\text{) }sinx\left(sinx+2cosx\right)=2\\ \Leftrightarrow cos^2x+\left(sinx-cosx\right)^2=0\\ \Leftrightarrow cosx=sinx=0\left(VN\right)\)

\(e\text{) }\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\\ \Leftrightarrow\sqrt{3}sin2x+cos2x=sin7x-\sqrt{3}cos7x\\ \Leftrightarrow sin2x\cdot\frac{\sqrt{3}}{2}+cos2x\cdot\frac{1}{2}=sin7x\cdot\frac{1}{2}-cos7x\cdot\frac{\sqrt{3}}{2}\\ \Leftrightarrow sin2x\cdot cos\frac{\pi}{3}+cos2x\cdot sin\frac{\pi}{3}=sin7x\cdot cos\frac{\pi}{3}-cos7x\cdot sin\frac{\pi}{3}\\ \Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(7x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=7x-\frac{\pi}{3}+m2\pi\\2x-\frac{\pi}{3}=\frac{4\pi}{3}-7x+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-m2\pi}{5}\\x=\frac{5\pi}{27}+\frac{n2\pi}{9}\end{matrix}\right.\)

15 tháng 7 2020

\(\text{a) }\sqrt{3}sin2x-cos2x+1=0\\ \Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=-\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos2x-sin\frac{\pi}{3}\cdot sin2x=\frac{1}{2}\\ \Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+m\pi\\x=n\pi\end{matrix}\right.\)

\(\text{b) }pt\Leftrightarrow sin4x=\frac{1-4cosx}{3}\\ \Leftrightarrow sin^24x+cos^24x=\left(\frac{1-cos4x}{3}\right)^2+cos^24x=1\\ \Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{4}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{arccos\left(-\frac{4}{5}\right)}{4}+\frac{k\pi}{2}\end{matrix}\right.\)