K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Ta có : (2x +3)2=49

 <=> (2x + 3)2= 72

<=> 2x + 3 =7 

<=> 2x = 4 

<=> x =2 

Vậy x =2

24 tháng 8 2020

\(\left(2x+3\right)^2=49\Rightarrow\left(2x+3\right)=7\Rightarrow2x=7-3\Rightarrow2x=4\Rightarrow x=4:2\Rightarrow x=2\)

3 tháng 3 2023

`(3*x+2)^2=121`

\(=>\left[{}\begin{matrix}3x+2=11\\3x+2=-11\end{matrix}\right.\\ =>\left[{}\begin{matrix}3x=11-2\\3x=-11-2\end{matrix}\right.\\ =>\left[{}\begin{matrix}3x=9\\3x=-13\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\dfrac{13}{3}\left(loại\right)\end{matrix}\right.\)

3 tháng 3 2023

`(3x+2)^2=121`

`=>( 3x+2)^2= +-11^2`

\(\Rightarrow\left[{}\begin{matrix}3x+2=11\\3x+2=-11\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=9\\3x=-13\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{13}{3}\end{matrix}\right.\)

6 tháng 5 2023

2/x + y/3 = 2

=> 2/x = 2 - y/3

= 2/x = 6-y/3

=> x(6-y) = 2.3

x(6-y) = 6

Do x∈N => x >= 0. Để x(6-y) = 6 thì x > 0

Mà 6>0 => 6-y > 0

Mà y∈ N => 6-y ∈ N*

Ta có bảng:

x1236
6-y6321
y0345

Thử lại thỏa mãn.

Vậy (x,y) = (1,0); (2,3); (3,4); (6,5)

 

22 tháng 11 2021

Với kiến thức lớp 7 chưa có nhiều tính chất thường những bài toán như thế này sẽ đúng trong 1 vài TH đầu, các TH còn lại sai sạch. Cụ thể bài này:

+) Với x = 0 ta tìm được y = 2

+) Với x = 1 ta có y2 = 5 => không có y thỏa mãn

+) Xét x ≥ 2. Ta có VT = 4.2x - 2 + 3 chia 4 dư 3 

Mà với tính chất của một số chính phương, ta có y chia 4 chỉ dư 0 hoặc 1

Nên không có cặp (x, y) thỏa mãn

Vậy ...

AH
Akai Haruma
Giáo viên
28 tháng 1 2023

Lời giải:

$(3x+2)^2=121=11^2=(-11)^2$

$\Rightarrow 3x+2=11$ hoặc $3x+2=-11$

$\Rightarrow x=3$ hoặc $x=\frac{-13}{3}$

Vì $x$ là số tự nhiên nên $x=3$

28 tháng 7 2023

3x + 22 = 196

  3x + 4 = 196

        3x = 196 - 4

        3x = 192

          x = 192 : 3

          x = 64

 

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

Nếu $y=0$ thì $3^x=2^y+1=2$ (vô lý)

Nếu $y=1$ thì $3^x=2^y+1=3\Rightarrow x=1$ 

Nếu $y\geq 2$ thì $3^x=2^y+1\equiv 1\pmod 4$

Mà $3^x\equiv (-1)^x\pmod 4$

$\Rightarrow (-1)^x\equiv 1\pmod 4$

$\Rightarrow x$ chẵn. Đặt $x=2k$ thì:

$2^y=3^x-1=3^{2k}-1=(3^k-1)(3^k+1)$

$\Rightarrow$ tồn tại $n>m >0$ tự nhiên sao cho $3^k-1=2^m; 3^k+1=2^n$ với $m+n=y$

$\Rightarrow 2^n-2^m=2$. 

$\Rightarrow 2^{n-1}-2^{m-1}=1$

$\Rightarrow 2^{m-1}$ lẻ 

$\Rightarrow m=1\Rightarrow n=2$

$\Rightarrow y=m+n=3$

$3^x=1+2^y=1+2^3=9\Rightarrow x=2$

Vậy $(x,y)=(2,3), (1,1)$

 

24 tháng 11 2021

Chị giúp em ạ