cho tỉ lệ thức\(\frac{2x+3}{y+12}=\frac{2x+1}{y+4}\)và\(x,y\ne0\)tính\(\frac{y^2-x^2}{y^2+17x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
x, y tỉ lệ nghịch vs 2, 3
=> 2.x=3.y=> \(x=\frac{3}{2}y\)
y, z tỉ lệ thuận với 4, 3
=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)
Em thay vào tính nhé
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Thay x=12 vào x/y=3/4 ta có:
12/y=3/4
=>12.4=3y
=>y=48:3=16
Vậy y=16
b)Ta có:x/y=3/4=>x/3=y/4
Đặt x/3=y/4=k=>x=3k,y=4k
Ta có:2x+y=10
hay 2.3k+4k=10
=>6k+4k=10
=>k(6+4)=10
=>10k=10=>k=1
Do đó:x/3=1=>x=1.3=3
y/4=1=>y=1.4=4
Vậy x=3;y=4
\(\frac{x}{y}=\frac{5}{3}\) <=> 3x=5y <=> \(\frac{x}{5}=\frac{y}{3}\)
+) Theo tính chất DTSBN ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{2x}{2.5}=\frac{y}{3}=\frac{2x+y}{10+3}=\frac{-26}{13}=-2\)
x/5=-2=>x=(-2).5=-10
y=3=-2=>y=(-2).3=-6
+) Theo tính chất DTSBN ta có :
\(\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)
x/5=1/4=>x=1/4.5=5/4
y/3=1/4=>y=1/4.3=3/4
+) Đặt k ta có :
\(\frac{x}{5}=k\Rightarrow x=5k\)
\(\frac{y}{3}=k\Rightarrow y=3k\)
x.y=60 <=> 5k.3k = 60
15k2=60
k2=60:15
k2=4
=> k=2
x=5k=2.5=10
y=3k=2.3=6
Xét x^2 - y^2 = 4
Để biểu thức trên đúng thì x^2 = 4 và y^2 = 0
Vậy x có thể có 2 giá trị là -2 và 2
Lại có x . y = 60
Mà số y = 0 nên x . y chắc chắn cũng bằng 0
Vậy không tồn tại 2 số x và y thỏa mãn các điều kiện trên
\(\frac{2x+3}{y+12}=\frac{2x+1}{y+4}\)
<=> ( 2x + 3 )( y + 4 ) = ( y + 12 )( 2x + 1 )
<=> 2xy + 8x + 3y + 12 = 2xy + y + 24x + 12
<=> 2xy + 8x + 3y + 12 - 2xy - y - 24x - 12 = 0
<=> 2y - 16x = 0
<=> 2y = 16x
<=> y = 8x
Thế y = 8x ta được :
\(\frac{y^2-x^2}{y^2+17x^2}=\frac{\left(8x\right)^2-x^2}{\left(8x\right)^2+17x^2}=\frac{64x^2-x^2}{64x^2+17x^2}=\frac{63x^2}{81x^2}=\frac{7}{9}\)
Bài làm:
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{2x+3}{y+12}=\frac{2x+1}{y+4}=\frac{2x+3-2x-1}{y+12-y-4}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{2x+3}{y+12}=\frac{1}{4}\\\frac{2x+1}{y+4}=\frac{1}{4}\end{cases}}\Rightarrow\hept{\begin{cases}8x+12=y+12\\8x+4=y+4\end{cases}}\Rightarrow8x=y\)
Thay vào: \(\frac{y^2-x^2}{y^2+17x^2}=\frac{\left(8x\right)^2-x^2}{\left(8x^2\right)+17x^2}=\frac{63x^2}{81x^2}=\frac{7}{9}\)