Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:
\(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Lê Nguyên Mạnh - Toán lớp 9 - Học trực tuyến OLM
Áp dụng bất đẳng thức Cauchy-Schwarz ta có:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\)
\(\Leftrightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge a+\sqrt{bc}\)
Do đó \(\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{a}}{\left(c+a\right)\left(c+b\right)}+\frac{bc}{\left(c+a\right)\left(c+b\right)}\left(1\right)\)
Chứng minh tương tự ta được:
\(\hept{\begin{cases}\sqrt{\frac{bc}{\left(c+b\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+b\right)\left(a+b\right)}}{\left(c+b\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}\left(2\right)\\\sqrt{\frac{ca}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{ca\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{c}}{\left(c+a\right)\left(a+b\right)}+\frac{ab}{\left(a+c\right)\left(a+b\right)}\left(3\right)\end{cases}}\)
\(\Rightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\)
\(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(a+c\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+\)\(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}\left(4\right)\)
Ta lại có: \(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}+\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{bc\left(b+c\right)+ac\left(a+c\right)+ab\left(a+b\right)+2abc}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}\)
\(=\frac{bc\left(a+b+c\right)+ca\left(a+b+c\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{c\left(a+b+c\right)\left(b+a\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)
\(\left(4\right)\Leftrightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)\(\ge\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó ta cần chứng minh \(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge1+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Điều này tương đương với \(\sqrt{a}\left(b+c\right)+\sqrt{b}\left(a+c\right)+\sqrt{c}\left(a+b\right)\ge6\sqrt{abc}\left(5\right)\)
Theo bất đẳng thức AM-GM thì (5) luôn đúng
Dấu "=" xảy ra khi (1);(2);(3) và (5) xảy ra dấu "=". điều này tương đương với a=b=c
Vậy ta có điều phải chứng minh
=))
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
sửa giả thiết là \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
Và Áp dụng BĐT cô-si, ta có \(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\ge3\left(abc\right)^2\)
dấu = xảy ra <=>a=b=c>0
Thay vào thì \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\) (ĐPCM)
^_^
Áp dụng bất đẳng thức Bunyakovsky ta được: \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)
Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)
Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)
Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)
Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra a = b = c = 1