K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

A = x4 - 17x3 + 17x2 - 17x + 20 tại x = 16

Ta có: x = 16 => x + 1 = 17

=> A = x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 20

= x4 - x4 - x3 + x3 + x2 - x2 - x +20

= 20 - x

Tại x = 16 thì A = 20 - 16 = 4

B = x5 - 15x4 + 16x3 - 29x2 + 13x tại x = 14

Ta có: x = 14 => x + 1 = 15; x + 2 = 16; 2x + 1 = 29; x - 1 = 13

=> B = x5 - (x + 1)x4 + (x + 2)x3 - (2x + 1)x2 + (x - 1)x

= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x

= x

Tại x = 14 thì B = 14

26 tháng 8 2018

A= x^3(x-17) + 17x(x-1) +20

=16^3.(-1) +17.16.15+20 = (16+1)(16-1).16 -16^3+20

= (16^2-1).16 -16^3+20 = 16^3-16+16^3+20=4

B= x^4(x-15) + 16x^2(x-1) + 13x . (-x+1)

= -14^4 +16.14^2.13 + 13.14.(-13)= -14^4 +(15+1).14^2.13 -13^2.14

= -14^4 +15.14^2.13 + 14^2.13 - 13^2.14= -14^4 +(14+1).14^2.(14-1) -13^2.14

= -14^4 +(14^2-1).14^2 +13.14 = -14^4 +14^4 -14^2 +13.14= 14(13-14) = -14

3 tháng 9 2018

\(A=x^4-17x^3+17x^2-17x+20\)

\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+4\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+4\)

\(=4\)

21 tháng 8 2021

Tại x = 16 => x +1 = 17

Thay vào A ta được:

A = x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 20

A= x4 -(x4 + x3)  + (x3 + x2)  -(x2 + x) +20

A= x4 - x4 - x3 + x3 + x2 - x2 -x + 20

A= - x+20

Mà  x = 16

=> A= -16 + 20 = 4

Vậy A= 4 khi x =16

29 tháng 6 2018

Đặt 17 = x + 1 và 20 = x + 4, ta có:

A = x4 - 17x3 + 17x2 - 17x + 20

⇒ A = x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + x +3

⇒ A = x4 - x4 - x3 + x3 + x2 - x2 - x + x + 3

⇒ A = 3

7 tháng 8 2020

Ra bằng 4 chứ bạn.

20 tháng 6 2015

x=16 nên 

17=x+17

=>B=x4-(x+1)x3+(x+1)x2-(x-1)x+20

=x4-x4-x3+x3+x2-x2-x+20

=-x+20

thay x=16 ta được 

B=-16+20=4

vậy B=4 tại x=16

21 tháng 5 2017

x^2*(x-30)-31x+1

thay x=31 vao bieu thuc 

(31)^2*(31-30)-31*31+1=1