tìm x biết :
a) (x + 1)2 = 3(x + 1)
b) (2x - 7)3 = 8(7 - 2x)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{8}{7}-\dfrac{1}{7}:\left(\dfrac{x}{3}-2\right)=-1\)
\(-\dfrac{1}{7}:\left(\dfrac{x}{3}-2\right)=\dfrac{15}{7}\)
\(\dfrac{x}{3}-2=\dfrac{-1}{15}\)
\(\dfrac{x}{3}=\dfrac{29}{15}\)
\(x=5,8\)
b. \(\dfrac{5}{8}+\dfrac{1}{4}\left(2x-1\right)=\dfrac{5}{4}\)
\(\dfrac{1}{4}\left(2x-1\right)=\dfrac{5}{8}\)
\(2x-1=\dfrac{5}{2}\)
\(2x=\dfrac{7}{2}\)
\(x=\dfrac{7}{4}\)
a)
<=> 10x - 35 + 16x - 10 = 5
<=> 10x + 16x = 5 + 35 + 10
<=> 26x = 50
<=> x = 50/26 = 25/13
\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)
\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
a, \(\left(x+1\right)^2=3\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right).\left(x+1-3\right)=0\)
\(\Rightarrow\left(x+1\right).\left(x-2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{-1;2\right\}\)
b, \(\left(2x-7\right)^3=8\left(7-2x\right)^2\)
\(\Rightarrow\left(2x-7\right)^3-8\left(2x-7\right)^2=0\) (do \(\left[A\left(x\right)\right]^2=\left[-A\left(x\right)\right]^2\))
\(\Rightarrow\left(2x-7\right)^2.\left(2x-7-8\right)=0\)
\(\Rightarrow\left(2x-7\right)^3.\left(2x-15\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-7\right)^3=0\\2x-15=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-7=0\\2x=15\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=7\\x=7,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3,5\\x=7,5\end{matrix}\right.\)
Vậy \(x\in\left\{3,5;7,5\right\}\)
Chúc bạn học tốt!!!
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
a) \(\left(x+1\right)^2=3\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
b) \(\left(2x-7\right)^3=8\left(7-2x\right)^2\)
\(\Leftrightarrow\left(2x-7\right)^3-8\left(2x-7\right)^2=0\)
\(\Leftrightarrow\left(2x-7\right)^2\left(2x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-7\right)^2=0\\2x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=15\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{15}{2}\end{cases}}\)
a, \(\left(x+1\right)^2=3\left(x+1\right)\Leftrightarrow x^2+2x+1=3x+3\)
\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
b, \(\left(2x-7\right)^3=8\left(7-2x\right)^2\)
\(\Leftrightarrow8x^3-116x^2+518x-735=0\Leftrightarrow\orbr{\begin{cases}x=3,5\\x=7,5\end{cases}}\)