Cho △ ABC có 3 góc nhọn , 3 đường cao AD , BE , CF cắt nhau tại H . Biết rằng ∠ CFE = 45o .
a) Tính ∠ ACB .
b) Cho CH = 10 cm , tính DE = ? cm .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban kham khảo thử nhé:
a) Xet tâm giac AEB va tam giác AFC:
- goc E= goc F
- A là goc chung
Vay tam giác AEB đồng dang vs tam giác AFC(gg)
=> AE/AF=AB/AC
Xét tam giác AEF va tam giác ACB:
- A là góc chung
-AE/AF=AB/AC ( cmt)
Vay tam giác AEF dong dạng vs tam giác ACB
b) Ta có:AE/AF=AB/AC
<=>AE/AB=AF/AC
=>AE/AB= 3/6=1/2
Suy ra: K= 1/2
Hay: AB/ AE= 2/1
=> S tam giác ABC/ S tam giác AEF= K^2
Nên S tam giác ABC/ S tam giác AEF= (2/1)^2=4
Vay S tam giác ABC= 4 S tam giác AEF
Bạn tham khảo lời giải tại đây:
Câu hỏi của Potato Pear Sweet - Toán lớp 9 | Học trực tuyến
Hình vẽ:
Lời giải:
a) Tứ giác $BFEC$ có 2 góc $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
$\Rightarrow \widehat{EBC}=\widehat{CFE}=45^0$
$\Rightarrow \widehat{ACB}=\widehat{ECB}=90^0-\widehat{EBC}=90^0-45^0=45^0$
b)
Xét tam giác $CHD$ và $ABD$ có:
$\widehat{CDH}=\widehat{ADB}=90^0$
$\widehat{HCD}=\widehat{BAD}(=90^0-\widehat{B}$)
$\Rightarrow \triangle CHD\sim \triangle ABD$ (g.g)
$\Rightarrow \frac{CH}{AB}=\frac{HD}{BD}$
Mà ở phần a ta chỉ ra $\widehat{EBC}=45^0$ nên $\widehat{HBD}=45^0$
$\Rightarrow \triangle HBD$ vuông cân tại $D$. Do đó $HD=BD$
$\Rightarrow CH=AB=10$ (cm)
Dễ chứng minh $AEDB$ là tứ giác nội tiếp
$\Rightarrow \triangle AHB\sim \triangle EHD$ (g.g)
$\Rightarrow \frac{AB}{ED}=\frac{HB}{HD}=\sqrt{2}$ (do $HBD$ là tg vuông cân tại $D$)
$\Rightarrow ED=\frac{AB}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5\sqrt{2}$ (cm)