K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Hình vẽ:

Violympic toán 9

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:

a) Tứ giác $BFEC$ có 2 góc $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.

$\Rightarrow \widehat{EBC}=\widehat{CFE}=45^0$

$\Rightarrow \widehat{ACB}=\widehat{ECB}=90^0-\widehat{EBC}=90^0-45^0=45^0$

b)

Xét tam giác $CHD$ và $ABD$ có:

$\widehat{CDH}=\widehat{ADB}=90^0$

$\widehat{HCD}=\widehat{BAD}(=90^0-\widehat{B}$)

$\Rightarrow \triangle CHD\sim \triangle ABD$ (g.g)

$\Rightarrow \frac{CH}{AB}=\frac{HD}{BD}$

Mà ở phần a ta chỉ ra $\widehat{EBC}=45^0$ nên $\widehat{HBD}=45^0$

$\Rightarrow \triangle HBD$ vuông cân tại $D$. Do đó $HD=BD$

$\Rightarrow CH=AB=10$ (cm)

Dễ chứng minh $AEDB$ là tứ giác nội tiếp

$\Rightarrow \triangle AHB\sim \triangle EHD$ (g.g)

$\Rightarrow \frac{AB}{ED}=\frac{HB}{HD}=\sqrt{2}$ (do $HBD$ là tg vuông cân tại $D$)

$\Rightarrow ED=\frac{AB}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5\sqrt{2}$ (cm)

 

 

30 tháng 3 2018

Ban kham khảo thử nhé:

a) Xet tâm giac AEB va tam giác AFC:

- goc E= goc F

- A là goc chung

Vay tam giác AEB đồng dang vs tam giác AFC(gg)

=> AE/AF=AB/AC

Xét tam giác AEF va tam giác ACB:

- A là góc chung

-AE/AF=AB/AC ( cmt)

Vay tam giác AEF dong dạng vs tam giác ACB

b) Ta có:AE/AF=AB/AC

<=>AE/AB=AF/AC

=>AE/AB= 3/6=1/2

Suy ra: K= 1/2

Hay: AB/ AE= 2/1

=> S tam giác ABC/ S tam giác AEF= K^2

Nên S tam giác ABC/ S tam giác AEF= (2/1)^2=4 

Vay S tam giác ABC= 4 S tam giác AEF

22 tháng 8 2020

à đù vĩ

21 tháng 8 2020

Đăng bài thế này là dở rồi :))

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Potato Pear Sweet - Toán lớp 9 | Học trực tuyến