K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

bạn có thể dùng bđt phụ này để chứng minh 

\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

31 tháng 7 2017

tìm GTLN trừ GTNN hay GTLN riêng và GTNN riêng

31 tháng 7 2017

riêng nha bạn

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

14 tháng 8 2020

+) \(x+y+xy=8\Leftrightarrow\left(x+1\right)\left(y+1\right)=9\)

+) Đặt: \(a=\sqrt{x+1};b=\sqrt{y+1}\)

+) \(P=\frac{\sqrt{x+1}+\sqrt{y+1}}{\left(x+1\right)\left(y+1\right)-\left(x+1\right)-\left(y+1\right)+2}=\frac{a+b}{11-a^2-b^2}\)

\(\ge\frac{2\sqrt{ab}}{11-2ab}=\frac{2\sqrt{3}}{11-2\cdot3}=\frac{2\sqrt{3}}{5}\)

Dấu = xảy ra khi x = y = 2

+) \(P^2=\frac{x+y+8}{\left(xy+1\right)^2}=\frac{16-xy}{\left(xy+1\right)^2}\le\frac{16}{1}=4\)

\(\Rightarrow P\le4\)

Dấu = xảy ra khi \(\orbr{\begin{cases}x=8;y=0\\x=0;y=8\end{cases}}\)

19 tháng 2 2018

Theo mình nghĩ a,b,c và x,y,z ko có liên quan gì nhau cả bạn ơi :))

19 tháng 2 2018

áp dụng cô si

\(\sqrt{1+x^2}>=\sqrt{2x}\)

tuuong tu

do do \(A>=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{2}+3\right)\)

\(>=3\sqrt[3]{\sqrt{xyz}}\left(2+\sqrt{3}\right)\)

ap dung co si

\(3=x+y+z>=3\sqrt[3]{xyz}\)

<=>\(\sqrt[3]{xyz}>=1\)

<=>\(3\sqrt[3]{\sqrt{xyz}}>=3\)

do do \(A>=3\left(\sqrt{2}+3\right)\)

dau bang xay ra <=>x=y=z=1