Cho x y z > 0 và x+y+z=4. Tìm Max và Min của \(C=\sqrt{2x+1}+\sqrt{3y+1}+\sqrt{4z+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
+) \(x+y+xy=8\Leftrightarrow\left(x+1\right)\left(y+1\right)=9\)
+) Đặt: \(a=\sqrt{x+1};b=\sqrt{y+1}\)
+) \(P=\frac{\sqrt{x+1}+\sqrt{y+1}}{\left(x+1\right)\left(y+1\right)-\left(x+1\right)-\left(y+1\right)+2}=\frac{a+b}{11-a^2-b^2}\)
\(\ge\frac{2\sqrt{ab}}{11-2ab}=\frac{2\sqrt{3}}{11-2\cdot3}=\frac{2\sqrt{3}}{5}\)
Dấu = xảy ra khi x = y = 2
+) \(P^2=\frac{x+y+8}{\left(xy+1\right)^2}=\frac{16-xy}{\left(xy+1\right)^2}\le\frac{16}{1}=4\)
\(\Rightarrow P\le4\)
Dấu = xảy ra khi \(\orbr{\begin{cases}x=8;y=0\\x=0;y=8\end{cases}}\)
Theo mình nghĩ a,b,c và x,y,z ko có liên quan gì nhau cả bạn ơi :))
áp dụng cô si
\(\sqrt{1+x^2}>=\sqrt{2x}\)
tuuong tu
do do \(A>=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\sqrt{2}+3\right)\)
\(>=3\sqrt[3]{\sqrt{xyz}}\left(2+\sqrt{3}\right)\)
ap dung co si
\(3=x+y+z>=3\sqrt[3]{xyz}\)
<=>\(\sqrt[3]{xyz}>=1\)
<=>\(3\sqrt[3]{\sqrt{xyz}}>=3\)
do do \(A>=3\left(\sqrt{2}+3\right)\)
dau bang xay ra <=>x=y=z=1
bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)