K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Đặt :

\(H=1^2-2^2+3^2-4^2+5^2-6^2+......+2019^2-2020^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+.\left(5^2-6^2\right)+...+\left(2019^2-2020^2\right)\) (Có 1010 nhóm)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2019-2020\right)\left(2019+2020\right)\)

\(=-3-7-11-......-4039\)

\(=-\left(3+7+11+4039\right)\)

\(=-\frac{\left(4039+3\right).1010}{2}\)

\(=-2041210\)

Vậy....

AH
Akai Haruma
Giáo viên
23 tháng 6 2023

1. 

$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$

2.

$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$

3. Không phù hợp để tính nhanh 

4. 

$=15^8-(15^8-1)=1$

5.

$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$

$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$

$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$

$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$

DT
23 tháng 6 2023

6:

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)

3 tháng 7 2021

a) \(153^2-53^2=\left(153-53\right)\left(153+53\right)=100.206=20600\)

b)

\(\left(2020^2-2019^2\right)+\left(2018^2-2017^2\right)+...+\left(2^2-1^2\right)\\ =\left(2020+2019\right)\left(2020-2019\right)+\left(2018+2017\right)\left(2018-2017\right)+...+\left(2+1\right)\left(2-1\right)\\ =2020+2019+2018+2017+...+2+1\\ =\dfrac{\left(2020+1\right)2020}{2}=2041210\)

 

AH
Akai Haruma
Giáo viên
3 tháng 7 2021

Lời giải:

a. $153^2-53^2=(153-53)(153+53)=100.206=20600$

b. 

$2020^2-2019^2+2018^2-2017^2+...+2^2-1^2$

$=(2020^2-2019^2)+(2018^2-2017^2)+...+(2^2-1^2)$

$=(2020-2019)(2020+2019)+(2018-2017)(2018+2017)+...+(2-1)(2+1)$

$=2020+2019+2018+2017+...+2+1$

$=\frac{2020.2021}{2}=2041210$

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

11 tháng 2 2016

50 - 52 + 40 - 42 + 30 - 32 + 20 - 22 +10 - 12 + 60

=(50 - 52) + (40 - 42) + (30 - 32) + (20 - 22) +(10 - 12) + 60

=(-2)+(-2)+(-2)+(-2)+(-2)+60

=(-10)+60

50

11 tháng 2 2016

=50

OLM duyệt đi

16 tháng 9 2017

Ta có : \(1^2+2^2+3^2+.....+10^2=385\)

\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)

16 tháng 9 2017

Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202

S = 22 + 42 +...+ 202

= (1.2)2 + (2.2)2 +...+ (2.10)2

= 12.22 + 22.22 +...+ 22.102

= 22(12 + 22 +...+ 102)

= 4.385

= 1540

27 tháng 6 2018

= 50

Nho t ick nha

27 tháng 6 2018

     \(\left(102+82+62+42+22\right)-\left(12+32+53+72+92\right)\)

\(=102+82+62+42+22-12-32-52-72-92\)

\(=\left(102-92\right)+\left(82-72\right)+\left(62-52\right)+\left(42-32\right)+\left(22-12\right)\)

\(=10+10+10+10+10\)

\(=10.5\)

\(=50\)

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

22 tháng 10 2020

a) \(=\left(127+73\right)^2=200^2=40000\)

b) \(=18^8-\left(18^8-1\right)=1\)

c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+97+...+2+1=5050\)

d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)

rồi giải ra như trên

10 tháng 4 2017

5 tháng 11 2018