chứng minh \(\forall n\in N\)thì n2+7n+2020 không chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G/s: A = \(n^2+7n+7⋮49\)
=> \(n^2⋮49\)
=> \(n⋮7\)
Đặt : n = 7 k
Khi đó: \(A=49k^2+49k+7⋮49\)
=> \(7⋮49\) vô lí
=> Điều g/s là sai
Vậy A không thể chia hết cho 49.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Lời giải:
a.
$3n+2\vdots n-3$
$3(n-3)+11\vdots n-3$
$\Rightarrow 11\vdots n-3$
$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$
Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$
b.
$n^2+7n+9\vdots n+7$
$n(n+7)+9\vdots n+7$
$\Rightarrow 9\vdots n+7$
$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$
$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$
Vì $n$ tự nhiên nên $n=2$
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
\(\Rightarrow n\left(n+7\right)+9⋮n+7\\ \Rightarrow n+7\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Rightarrow n=2\left(n\in N\right)\)
Nhan xet \(n^2\equiv0,1,2,4\left(mod7\right)\forall n\inℕ\) , \(7n⋮7\) va \(2020\equiv4\left(mod7\right)\)
nen suy ra \(n^2+7n+20204\equiv4,5,6,1\left(mod7\right)\)
Vay \(^{n^2+7n+2020̸}\) khong chia het cho 7
lm thế khó hỉu lém ak mod là j ak e chx hok