K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

ta có a và b không chia hết cho 3 

Suy ra a và b chia 3 dư 1 hoặc dư 2 

Với mọi số a b không chia hết cho 3 thì bình phương của nó chia 3 luôn dư 1 

Suy ra a^2 - b^2 chia hết cho3 ( đpcm ) 

1 tháng 10 2023

a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2  nhưng 10615 không chia hết cho 2

10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9

1 tháng 10 2023

c,    B = 102010 -  4                                                                                   

       10 \(\equiv\) 1 (mod 3)

      102010 \(\equiv\) 12010 (mod 3)

      4          \(\equiv\) 1(mod 3)

⇒ 102010 - 4   \(\equiv\) 12010 - 1 (mod 3)

⇒ 102010 - 4   \(\equiv\)  0 (mod 3)

⇒ 102010 - 4 \(⋮\) 3

22 tháng 1 2019

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

26 tháng 11 2021

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

17 tháng 1 2022

Giúp tớ với tớ cần gấp

17 tháng 1 2022

bài 1:

Ta có 2 Chia hết cho 2

=> 2.3.4.5.6.7 chia hết cho 2   (1)

Ta có 4 chia hết cho 2

=> 3.4.5.6.7.8 chia hết cho 2   (2)

Từ (1) và (2) => A chia hết cho 2

bài 2

Ta có : 1995 chia hết cho 3

=> 995.1997 chia hết cho 3      (1)

ta có: 1998 chia hết cho 3

=> 1998.1999 chia hết cho 3    (2)

Từ (1) và (2) => B chia hết cho 3

Bài 3

Ta có: 2^6 chia hết cho 64

=> 2^2021 chia hết cho 64

=>  2^2021.2^2022.2^2023.2^2024 chia hết cho 3

=> C chia hết cho 3

 

14 tháng 11 2016

A=2+22+23+...+212

=(2+22)+(23+24)+...(211+212)

=2.(1+2)+23.(1+2)+...+211.(1+2)

=2.3+23.3+...+211.3

=3.(2+23+...+211

=>A chia hết cho 3 

A=2+22+23+...+212

=(2+22+23)+...+(210+211+212)

=2.(1+2+22)+....+210.(1+2+22)

=2.7+...+210.7

=7.(2+...+210)

=>A chia hết cho 7

A=2+22+23+...+212

2A=2(2+22+23+...+212)

2A=22+23+24+...+213

2A-A=(22+23+24+...+213) - (2+22+23+...+212)

A=213 - 2

28 tháng 1 2024

vì dấu hiệu chia hết cho 3 là tổng các chữ số nên \(\overline{ab}\)

có a+b \(⋮\) 3 \(\Rightarrow\) \(\overline{ab}⋮3\)

28 tháng 1 2024

bạn nên sửa đề bài từ ab sang \(\overline{ab}\) nha

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

27 tháng 10 2019

a = 1 ; b = 2

27 tháng 10 2019

giúp mik với ạ