so sánh:
\(2+\sqrt{5}\)và \(6-\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
Lời giải:
\(2\sqrt{12}>2\sqrt{9}=2.3=6>3\)
\(\sqrt{6}> \sqrt{5}\)
\(\Rightarrow 2\sqrt{12}+\sqrt{6}> 3+\sqrt{5}\)
\(A=\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(A< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}\)
\(=\sqrt{6+\sqrt{6+3}}+\sqrt{2+\sqrt{2+2}}\)
\(=\sqrt{6+\sqrt{9}}+\sqrt{2+\sqrt{4}}\)
\(=\sqrt{6+3}+\sqrt{2+2}\)
\(=\sqrt{9}+\sqrt{4}\)
\(=3+2=5=B\)
Vậy A < B
Chúc bạn học tốt !!!
Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn
\(\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}=3+2=5\)
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)