K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

b) x^8+x^4+1

=x^8-x^2+x^4-x+x^2+x+1

=x^2(x^6-1)+x(x^3-1)+(x^2+x+1)

=x^2[(x^3)^2-1]+x(x^3-1)+(x^2+x+1)

=x^2(x^3-1)(x^3+1)+x(x^3-1)+(x^2+x+1)

=x^2(x-1)(x^2+x+1)(x^3+1)+x(x^3-1)+(x^2+x+1)

=x^2(x-1)(x^2+x+1)(x^3+1)+x(x-1)(x^2+x+1)+(x^2+x+1)

=(x^2+x+1)[x^2(x-1)(x^3+1)+x(x-1)+1]

=(x^2+x+1)(x^6+x^3-x^5-x+1)

 

dung thi tick cho minh nha minh thu may tinh roi

`a, 9x^2 - 16 = (3x+4)(3x-4)`

`b, 4x^2 - 12xy + 9y^2 = (2x-3y)^2`

`c, t^3-8 = (t-2)(t^2 - 2t + 4)`

`d, 2ax^3y^3 + 2a = 2a(x^3y^3 + 1) = 2a(xy+1)(x^2y^2 - xy + 1)`

22 tháng 7 2023

a) \(\left(9x^2-16\right)=\left(3x-4\right)\left(3x+4\right)\)

b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)

c) \(t^3-8=\left(t-2\right)\left(t^2+2t+4\right)\)

d) \(2ax^3y^3+2a=2a\left(x^3y^3+1\right)\)

20 tháng 7 2021

a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)

b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)

\(=x\left(x-1\right)\left(2a-1\right)\)

c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)

d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)

\(=\left(a-8\right)\left(2a-1\right)\)

20 tháng 7 2021

a) `4abc-8ab^2c=4abc(1-2b)`

b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`

c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`

d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`

17 tháng 10 2021

a) \(\left(a+b\right)^3-\left(a-b\right)^3=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)=6a^2b+b^3=b\left(6a^2+b^2\right)\)

b)  \(\left(x+y\right)^3+\left(x-y\right)^3=\left(x^3+3x^2y+3xy^2+y^3\right)+\left(x^3-3x^2y+3xy^2-y^3\right)=2x^3+6xy^2=2x\left(x^2+3y^2\right)\)

17 tháng 10 2021

a) \(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

b) \(=\left(x+y+x-y\right)\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=2x\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)

\(=2x\left(x^2+3y^2\right)\)

17 tháng 10 2021

a: \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3a^2b+b^3\)

\(=6a^2b+2b^3\)

\(=2b\left(3a^2+b^2\right)\)

Bài 1: 

a: \(4a^2-6b=2\left(2a^2-3b\right)\)

b: \(m^3n-2m^2n^2-mn\)

\(=mn\left(m^2-2mn-1\right)\)

2 tháng 10 2021

Bài 1:

a) \(4a^2-6b=2\left(a^2-3b\right)\)

b) \(=mn\left(m^2-2mn-1\right)\)

Bài 2:

a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)

b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)

26 tháng 3 2018

a3m+2a2m+am = am(a2m+2am+1) = am[(am)2+2am+1] = am(am+1)2

26 tháng 3 2018

Ta có :

a3m+2a2m+am 

= am(a2m+2am+1)

= am[(am)2+2am+1]

= am(am+1)2

a: =(x-z)(y+8)

b; =x^2-2x-3x+6

=(x-2)(x-3)

c: =x^4+10x^2-x^2-10

=(x^2+10)(x^2-1)

=(x^2+10)(x-1)(x+1)

15 tháng 7 2023

\(a)x^5+x^4+1\)

\(=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

\(b)x^8+x^7+1\)

\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

\(#Tuyết\)