K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(R=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}\)

\(=\left|x-1\right|+\left|x+1\right|\)

Ta có: \(-1\le x\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x-1\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x-1\right|=1-x\end{matrix}\right.\)

\(\Leftrightarrow R=x+1+1-x=2\)

NV
10 tháng 10 2019

1/ \(\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}\)

\(=2\)

2/ ĐKXĐ: \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

3/ \(4\left|x\right|-\sqrt{\left(5x-1\right)^2}=4\left|x\right|-\left|5x-1\right|\)

\(=4x-\left(5x-1\right)=1-x\)

4/ \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}< \sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x< 7\end{matrix}\right.\) \(\Rightarrow0\le x< 7\)

5/ \(M=\sqrt{3-2\sqrt{2.3}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)

6/ \(\left|x\right|-\sqrt{\left(x-1\right)^2}=\left|x\right|-\left|x-1\right|=x-\left(x-1\right)=1\)

10 tháng 10 2019

1.

\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\)

\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

2.

\(\sqrt{a^2-1}\text{ xác định }\Leftrightarrow a^2-1\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+1\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

3.

\(4\left|x\right|-\sqrt{1+25x^2-10x}\)

\(=4\left|x\right|-\sqrt{\left(5x-1\right)^2}\)

\(=4\left|x\right|-\left|5x-1\right|\)

\(=4x-5x+1=1-x\)

4.

ĐKXĐ: \(x\ge0\)

\(-\sqrt{x}>-\sqrt{7}\)

\(\Leftrightarrow\sqrt{x}< \sqrt{7}\)

\(\Leftrightarrow\text{ }x< 7\)

Vậy bât phương trình có nghiệm \(0\le x< 7\)

5.

\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{2}.\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}\)

6.

\(\left|x\right|-\sqrt{1-2x+x^2}\)

\(=\left|x\right|-\sqrt{\left(1-x\right)^2}\)

\(=\left|x\right|-\left|x-1\right|\)

\(=x-x+1=1\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

1.

$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$

$=x+3+(3-x)=6$

2.

$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$

$=|x+2|-|x|=x+2-(-x)=2x+2$
3.

$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$

$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$

$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$

$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$

 

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

4.

$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$

$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$

5.

$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$

6.

$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$

$=2x-1-\frac{|x-5|}{x-5}$

25 tháng 7 2016

P=\(\sqrt{\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{x-\sqrt{x}-x-\sqrt{x}+x+1}\)

  =\(\sqrt{x-2\sqrt{x}+1}\)

  =\(\sqrt{\left(\sqrt{x}-1\right)^2}\)

  =\(\sqrt{x}-1\)

27 tháng 11 2019

\(\hept{\begin{cases}-1\le x\le1\\2-\sqrt{1-x^2}\end{cases}\Rightarrow-1\le x\le1\left(^∗\right)}\)

Đặt : \(\hept{\begin{cases}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=2\\a,b\ge0\end{cases}}}\)

A tồn tại mọi x thuộc ( * )

\(A=\frac{\sqrt{1-ab}\left(a^3+b^3\right)}{2-ab}=\frac{\sqrt{a^2-2ab+b^2}\left(a+b\right)\left(a^2+b^2-ab\right)}{2-ab}\)

\(A=\frac{\sqrt{2}\sqrt{\left(a-b\right)^2}\left(a+b\right)\left(2-ab\right)}{\left(2-ab\right)}\) . Vói đk ( \(I\)\(A=\frac{\sqrt{2}}{2}!a-b!\left(a+b\right)\)

\(\orbr{\begin{cases}\hept{\begin{cases}a\ge b\Leftrightarrow0\le x\le1\\A=\frac{\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{\sqrt{2}}{2}x\end{cases}}\\\hept{\begin{cases}a< b\Leftrightarrow-1\le x< 0\\A=\frac{-\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{-\sqrt{2}}{2}x\end{cases}}\end{cases}}\)

\(\Rightarrow A=\frac{\sqrt{2}}{2}!x!\) . Với x thỏa mãn điều kiện ( * )

25 tháng 7 2016

Với điều kiện  \(0\)\(\le x\le1\)ta có

P= \(\sqrt{\frac{\sqrt{x\left(x\sqrt{x-1}\right)}}{x+\sqrt{x}+1}-\sqrt{\frac{\sqrt{x\left(x\sqrt{x+1}\right)}}{x-\sqrt{x}+1}+x+1}}\)

sử dụng hằng đẳng thức bậc 3  : \(x^3\)\(y^3\)và \(x^3\)+  \(y^3\)

ta có P = \(\sqrt{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1}\)\(\sqrt{x-2\sqrt{x}+1}=\)\(\sqrt{\left(\sqrt{x}-1\right)^2}\)=\(\left|\sqrt{x}-1\right|\)

P= \(1-\sqrt{x}\)

26 tháng 7 2016

mk nghĩ P=\(\sqrt{x}-1\) bạn ak

Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)

\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+\sqrt{x}+1\right)}{\left(x-1\right)\left(x-\sqrt{x}+1\right)}\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)