1/5+ 1/45 + 1/117 + 1/221 +...... + 1/x.(x+4) = 53/216
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{9021}+\frac{1}{9797}\)
\(=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{93.97}+\frac{1}{97.101}\)
\(=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{93.97}+\frac{4}{97.101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\left(\frac{101}{101}-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}\)
\(=\frac{25}{101}\)
1/5+1/45+1/117+1/221+...+1/9021+1/9797
=1/1.5+1/5.9+1/9.13+1/13.17+...+1/93.97+1/97.101
=1-1/5+1/5-1/9+1/9-1/13+1/13-1/17+...+1/93-1/97+1/97-1/101
=1-1/101
=100/101
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
nhớ k cho mình nha
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)<\frac{1}{4}.\left(1-0\right)=\frac{1}{4}.1=\frac{1}{4}\)
=>ĐPCM
a) \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+\frac{1}{357}+\frac{1}{525}\)
\(\Rightarrow A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\)
\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{21.25}\)
\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(4A=\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow A=\frac{24}{25}\div4=\frac{6}{25}<\frac{1}{4}\)
Vì A<\(\frac{6}{25}<\frac{1}{4}\Leftrightarrow A<\frac{1}{4}\)
ĐK : x \(\ne\)0 ; \(x\ne-4\)
Ta có : \(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{x\left(x+4\right)}=\frac{53}{216}\)
\(\Rightarrow\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{x\left(x+4\right)}=\frac{53}{216}\)
=> \(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{53}{216}\)
=> \(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{53}{216}:\frac{1}{4}\)
=> \(1-\frac{1}{x+4}=\frac{53}{54}\)
=> \(\frac{1}{x+4}=\frac{1}{54}\)
=> x + 4 = 54
=> x = 50 (tm)
Vậy x = 50