Bài 1: Viết biểu thức sau đây dưới dạng lũy thừa của 3 : \(3\cdot9^3\cdot27^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^2.49^3.7^7=7^2.\left(7^2\right)^3.7^7=7^2.7^6.7^7=7^{15}\)
\(3^5.9^4.27^2.81=3^5.\left(3^2\right)^4.\left(3^3\right)^2.3^4=3^5.3^8.3^6.3^4=3^{23}\)
a) \(7^2.49^3.7^7=7^2.7^6.7^7=7^{15}\)
b) \(3^5.9^4.27^2.81=3^5.3^8.3^6.3^4=3^{23}\)
3.93.272
=3.(32)3.(33)2
=31.32.3+33.2
=31+36+36
=31+6+6
=313
Bài 6:
a: \(2^{27}=8^9\)
\(3^{18}=9^9\)
b: Vì \(8^9< 9^9\)
nên \(2^{27}< 3^{18}\)
a: \(2^6\cdot3^3=\left(2^2\cdot3\right)^3=12^3\)
b: \(6^4\cdot8^3=2^4\cdot3^4\cdot2^9=2^{13}\cdot3^4\)
c: \(16\cdot81=36^2\)
d: \(25^4\cdot2^8=100^4\)
`@` `\text {Ans}`
`\downarrow`
\(3^2\cdot2^5\cdot\left(\dfrac{2}{3}\right)^2\)
`=`\(\left(3\cdot\dfrac{2}{3}\right)^2\cdot2^5\)
`=`\(2^2\cdot2^5=2^7\)
\(3^2\cdot2^5\cdot\left(\dfrac{2}{3}\right)^2\)
\(=2^5\cdot\left(3\cdot\dfrac{2}{3}\right)^2\)
\(=2^5\cdot\left(\dfrac{3\cdot2}{3}\right)^2\)
\(=2^5\cdot2^2\)
\(=2^{2+5}\)
\(=2^5\)
c) \(\left(\dfrac{5}{4}\right)^4:\left(\dfrac{15}{2}\right)^4=\left(\dfrac{5}{4}:\dfrac{15}{2}\right)^4=\left(\dfrac{1}{6}\right)^4\)
d) \(10^4:16=10^4:2^4=\left(10:2\right)^4=5^4\)
e) \(\left(-2\right)^3.125=\left(-2\right)^3.5^3=\left(-2.5\right)^3=-10^3\)
f) \(64^3:\left(-2\right)^9=64^3:\left(-8\right)^3=\left(64:-8\right)^3=-8^3\)
\(=5^2\cdot\dfrac{5}{3}\cdot\dfrac{3}{5}\cdot\dfrac{3}{5}=5^2\cdot\dfrac{3}{5}=5\cdot3=15^1\)
3 \(\times\)25\(\times\) (\(\dfrac{2}{3}\))2
= \(\dfrac{2^5.2^2.3}{3^2}\)
= \(\dfrac{2^7}{3}\)
Lời giải:
\(3.2^5.(\frac{2}{3})^2=\frac{3.2^5.2^2}{3^2}=\frac{2^7}{3}=(\frac{2}{\sqrt[7]{a}})^7\).
Ta có :
\(3.9^3.27^2=3.\left(3^2\right)^3.\left(3^3\right)^2\)
\(=3.3^6.3^6=3^{13}\)
3.9^3.27^2
= 3.(3^2)^3.(3^4)^2
=3.3^6.3^8
=3^15