K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2020

ĐKXĐ: \(x\ge-4\)

\(\Leftrightarrow\sqrt{x+8}+2=\sqrt{5x+20}\)

\(\Leftrightarrow x+12+4\sqrt{x+8}=5x+20\)

\(\Leftrightarrow\sqrt{x+8}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+8=x^2+4x+4\)

\(\Leftrightarrow x^2+3x-4=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\left(ktm\right)\end{matrix}\right.\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

11 tháng 12 2021

\(x=7\)

11 tháng 12 2021

ĐKXĐ:\(x\ge-9\)

\(x-\sqrt{x+9}=3\\ \Leftrightarrow\sqrt{x+9}=x-3\left(x\ge3\right)\\ \Leftrightarrow x+9=x^2-6x+9\\ \Leftrightarrow x^2-7x=0\\ \Leftrightarrow x\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy x=7

6 tháng 1 2021

ĐKXĐ: \(0\le x\le5\).

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\).

PT đã cho tương đương với: \(\left(8-ab\right)\left(a-b\right)=2\left(a-b\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\ab=6\end{matrix}\right.\).

+) \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=2,5\left(TMĐK\right)\).

+) \(ab=6\Leftrightarrow\sqrt{x\left(5-x\right)}=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=3\left(TMĐK\right)\end{matrix}\right.\).

Vậy...

6 tháng 1 2021

ĐK: \(0\le x\le5\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{5-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(8-ab\right)\left(a-b\right)=2\left(a^2-b^2\right)\)

\(\Leftrightarrow\left(a-b\right)\left(8-ab-2a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\ab+2a+2b=8\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{x}=\sqrt{5-x}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH2: \(ab+2a+2b=8\)

\(\Leftrightarrow\sqrt{5x-x^2}+2\sqrt{5-x}+2\sqrt{x}=8\)

\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x}-3\right)\left(\sqrt{5-x}+\sqrt{x}+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+\sqrt{x}=-7\left(l\right)\\\sqrt{5-x}+\sqrt{x}=3\end{matrix}\right.\)

\(\sqrt{5-x}+\sqrt{x}=3\)

\(\Leftrightarrow5+2\sqrt{5x-x^2}=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

Vậy ...