Tính nhanh: 1/1 + 2 + 1/1 + 2 + 3 + 1/ 1 + 2 + 3 + 4 + ....+ = 1/ 1+2+3 +...+50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)
\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+50\right).50:2}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{50.51}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=2.\frac{49}{102}=\frac{49}{51}\)
Ủng hộ mk nha ^_-
1/1+2 + 1/1+2+3 +1/1+2+3+4 +...+1/1+2+3+...+50
Ta có 2/2(1+2)+2/2(1+2+3)+...+2/2(1+2+...+50)
=2/6+2/12+2/20+...+2/2550
=2/2.3+2/3.4+...+2/50.51
=2(1/2.3+1/3.4+...+1/50.51)
=2(1/1-1/2+1/2-...+1/50-1/51)
=2.(1-1/51)
=2.50/51=100/51
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)
\(=\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{50.51:2}=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{1}{2}.\frac{49}{102}=\frac{49}{204}\)
Đây mà toán lớp 5 à.
Áp dụng công thức
\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\) ta được
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)
Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{51}\)
\(=1-\frac{2}{51}=\frac{49}{51}\)
A=1/1+2+1/1+2+3+1/1+2+3+4+.....+1/1+2+3+4+...+50
Ta có 1/1+2+3+...n=1/[n*(n+1)/2]=2*[1/n(n+1)]=2*[1/n-1/n+1]
Thay n=1;2;3;4;5;6;...;50 Ta có A=2*[1/2-1/51]=49/51
vậy.......................................................
c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)
=50+49+48+............+1
=(50+1)50=2550:2=1275
d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1
e;=(3-1)(3+1)(3^2+1)...........(3^16+1)
=(3^2-1)(3^2+1)..............(3^16+1)
=(3^16-1)(3^16+1)=3^32-1
tu tinh ket qua luy thua tao khong thua hoi dau
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)
\(=\frac{1}{2\times\left(2+1\right):2}+\frac{1}{3\times\left(3+1\right):2}+\frac{1}{4\times\left(4+1\right):2}+...+\frac{1}{50\times\left(50+1\right):2}\)
\(=\frac{1}{2}\times\frac{1}{2\times3}+\frac{1}{2}\times\frac{1}{3\times4}+\frac{1}{2}\times\frac{1}{4\times5}+...+\frac{1}{2}\times\frac{1}{49\times50}\)
\(=\frac{1}{2}\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{49\times50}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}\times\frac{12}{25}=\frac{6}{25}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+50}\)
\(=\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+\frac{1}{4.\left(4+1\right):2}+..+\frac{1}{50.\left(50+1\right):2}\)
\(=\frac{1}{2}.\frac{1}{2.3}+\frac{1}{2}.\frac{1}{3.4}+\frac{1}{2}.\frac{1}{4.5}+..+\frac{1}{2}.\frac{1}{49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)