cho góc nhọn xOy và tia phân giác Oz của góc xOy. Lấy A thuộc Ox, B thuộc Oy sao cho OA=Ob. Gọi M là giao điểm của tia Oz và đoạn thẳng AB. Chứng minh rằng:
a) Tam giác AOM=BOM, M là trung điểm của AB
b)OM vuông góc với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOIA và ΔOIB có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOIA=ΔOIB
b: Xét ΔONI vuông tại N và ΔOMI vuông tại M có
OI chung
\(\widehat{NOI}=\widehat{MOI}\)
Do đó: ΔONI=ΔOMI
Suy ra: IN=IM
a: Xét ΔAOM và ΔBOM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔAOM=ΔBOM
b: ΔOAB cân tại O
mà OI là phân giác
nen OI vuông góc AB
=>ΔMIA vuông tại I
c: Xét ΔMIA vuông tại I và ΔMIBvuông tại I có
MA=MB
MI chung
=>ΔMIA=ΔMIB
a) Xét tam giác \(OIA\) và tam giác \(OIB\) có:
\(OA=OB\)
\(\widehat{AOI}=\widehat{BOI}\)
\(OI\) cạnh chung
suy ra \(\Delta OIA=\Delta OIB\) (c.g.c)
b) Xét tam giác \(OIN\) và tam giác \(OIM\):
\(\widehat{ION}=\widehat{IOM}\)
\(OI\) cạnh chung
\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)
suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)
\(\Rightarrow IN=IM\)
c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).
Xét tam giác \(INA\) và tam giác \(IMB\):
\(IA=IB\)
\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)
\(IN=IM\)
suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)
d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)
suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).
a) xét \(\Delta AOM\)và \(\Delta BOM\)có
\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung
=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)
=> AM = BM (hai cạnh tương ứng )
=> M là trung điểm của AB
b) vì AO = BO
=> \(\Delta ABO\)là tam giác cân
vì OM là phân giác của AB
=> OM vừa là đường cao của tam giác ABC
=> \(OM\perp AB\left(đpcm\right)\)