Cho 4 số chẵn liên tiếp .CMR hiệu của tích 2 số cuối với tích 2 số đầu chia hết cho 4 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bốn số ke kiên tiếp có dạng: 2n+1;2n+3;2n+5;2n+7 (n thuộc N)
Ta có:
(2n+5)(2n+7) - (2n+1)(2n+3)
=4n²+24n+35-(4n²+8n+3)
=16n+32
Do 16n chia hét cho 16 và 32 chia hết chô 16
=>16n+32 chia hết cho 16
=>đpcm
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
Gọi 3 số đó lần lượt là x-1;x;x+1 (x-1)x+x(x+1)+(x+1)(x-1)=26 <=>x 2 -x+x 2+x+x 2 -1=26 <=>3x 2 -1=26 <=>3x 2=27 <=>x 2=9 <=>x=3 Vậy 3 số đó lần lượt là 2;3;4
Bạn ơi hình như thiếu trường hợp 3 số tự nhiên liên tiếp -2 , -3 , -4
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)
Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)
Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)
L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy
a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a)
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2) 2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự
Ta viết dạng tổng quát của 4 số ấy là:
2k; 2k+2; 2k+4 và 2k+6 với k là số tự nhiên
Xét tích của hai số giữa và tích của số đầu và cuối lần lượt là:
(2k+2)(2k+4)=4k2+12k+8
2k(2k+6)=4k2+12k
=> (2k+2)(2k+4)-2k(2k+6)=4k2+12k+8-4k2-12k=8 không đổi
Vậy hiệu của tích 2 số giữa và tích số đầu và cuối trong 4 số tự nhiên chẵn liên tiếp là không đổi
Ta viết dạng tổng quát của 4 số ấy là: 2k; 2k+2; 2k+4 và 2k+6 với k là số tự nhiên
Xét tích của hai số giữa và tích của số đầu và cuối lần lượt là: (2k+2)(2k+4)=4k 2+12k+8
2k(2k+6)=4k 2+12k
=> (2k+2)(2k+4)-2k(2k+6)=4k 2+12k+8-4k 2 -12k=8 không đổi
Vậy hiệu của tích 2 số giữa và tích số đầu và cuối trong 4 số tự nhiên chẵn liên tiếp là không đổi
Gọi 4 số chẵn liên tiếp đó là: 2n; 2n + 2; 2n + 4; 2n + 6
Ta có: \(\left[2n.\left(2n+2\right)\right]-\left[\left(2n+4\right)\left(2n+6\right)\right]\)
\(=\left(4n^2+4n\right)-\left(4n^2+12n+8n+24\right)\)
\(=4n^2+4n-4n^2-12n-8n-24\)
\(=-16n-24\)
Vì: \(\left\{{}\begin{matrix}-16n⋮4\\24⋮4\end{matrix}\right.\)
=> -16n - 24 ⋮ 4
Hay: Hiệu của tích 2 số cuối với tích 2 số đầu chia hết cho 4