Cho \(a^2+b^2=7\)và a-b=3. Tính \(a^3-b^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)^2 = a^2-2ab+b^2
3^2 =7 - 2ab
9= 7 -2ab
-2ab=7-9
-2ab= -2
ab= 1
Có a^3-b^3= (a-b)(a^2+ab+b^2)
a^3-b^3= 3. (7+1)
a^3-b^3= 24
Ta co : (a-b)2=a2-2ab+b2
(a-b)2=a2+b2-2ab
Ma : a2+b2 va a-b=3
\(\Rightarrow\)32=7-2ab
7-32=-2ab
-2=-2ab
\(\Leftrightarrow ab=1\)
Ta lai co : a3-b3
=(a-b)(a2+ab+b2)
=(a-b)(a2+b2+ab)
=3.(7+1)
=24
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
Câu này dễ lắm nha!
Ta có: \(a-b=3\)
\(\Rightarrow\left(a-b\right)^2=9\)
\(\Rightarrow a^2-2ab+b^2=9\)
\(Hay:7-2ab=9\)
\(\Rightarrow2ab=-2\)
\(ab=-1\)
Lại có: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
Thay vào là ra thoy,kết quả là 18 thì pk
=.= hok tốt!!
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
Ta có \(\left\{{}\begin{matrix}a+b=\dfrac{-2+\sqrt{3}}{3}+\dfrac{-2-\sqrt{3}}{3}=-\dfrac{4}{3}\\ab=\dfrac{\left(-2+\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{9}=\dfrac{1}{9}\end{matrix}\right.\)
\(\left(a+b\right)^2=a^2+b^2+2ab=16\\ \Leftrightarrow a^2+b^2=\dfrac{16}{9}-2\cdot\dfrac{1}{9}=\dfrac{14}{9}\left(1\right)\\ \left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=-\dfrac{64}{27}\\ \Leftrightarrow a^3+b^3+\dfrac{1}{3}\cdot\left(-\dfrac{4}{3}\right)=-\dfrac{64}{27}\\ \Leftrightarrow a^3+b^3=-\dfrac{64}{27}+\dfrac{4}{9}=-\dfrac{52}{27}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left(a^2+b^2\right)\left(a^3+b^3\right)=a^5+b^5+a^2b^2\left(a+b\right)=\dfrac{14}{9}\cdot\left(-\dfrac{52}{27}\right)=-\dfrac{728}{243}\\ \Leftrightarrow a^5+b^5+\dfrac{1}{81}\cdot\left(-\dfrac{4}{3}\right)=-\dfrac{728}{243}\\ \Leftrightarrow a^5+b^5=-\dfrac{728}{243}+\dfrac{4}{243}=-\dfrac{724}{243}\left(3\right)\)
\(\left(1\right)\left(3\right)\Rightarrow\left(a^2+b^2\right)\left(a^5+b^5\right)=a^7+b^7+a^2b^2\left(a^3+b^3\right)=\dfrac{14}{9}\cdot\left(-\dfrac{724}{243}\right)=-\dfrac{10136}{2187}\\ \Leftrightarrow a^7+b^7+\dfrac{1}{81}\cdot\left(-\dfrac{52}{27}\right)=-\dfrac{10136}{2187}\\ \Leftrightarrow a^7+b^7=-\dfrac{10136}{2187}-\dfrac{52}{2187}=-\dfrac{10188}{2187}=\dfrac{1132}{243}\)
tick mình lên 30 điểm với
ta co: a-b=3
=> (a-b)^2=9
a^2-2ab+b^2=9
a^2+b^2-2ab=9
7-2ab=9
2ab=-2
ab=-1
ta lai co a^3-b^3=(a-b)(a^2+ab+b^2)=(a-b)(a^2+b^2+ab)=3(7-1)=18