K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^4+4\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=\left(x^2\right)^2+8^2+16x^2-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(64x^4+y^4\)

\(=\left(8x^2\right)^2+\left(y^2\right)^2+16x^2y^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)

d) Ta có: \(x^3-x^2-4\)

\(=x^3+x^2+2x-2x^2-2x-4\)

\(=x\left(x^2+x+2\right)-2\left(x^2+x+2\right)\)

\(=\left(x^2+x+2\right)\left(x-2\right)\)

e) Ta có: \(x^3-7x-6\)

\(=x^3-x-6x-6\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x^2-3x+2x-6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

f) Ta có: \(x^4+x^2+1\)

\(=x^4+2x^2+1-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

b: \(\left(x^2+4\right)^2-16x^2\)

\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)

c: \(x^5-x^4+x^3-x^2\)

\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left(x^2+1\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2021

Lời giải:

a. Bạn xem lại đề

b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)

\(=(x-2)^2(x+2)^2\)

c.

\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)

\(=x^2(x^2+1)(x-1)\)

28 tháng 10 2017

a, \(x^4+2x^2+1-x^2\)

\(\left(x^2+1\right)^2-x^2\)

\(\left(x^2+x+1\right)\left(x^2-x+1\right)\)

b, \(x^4+x^2+1\)

\(x^4+2x^2+1-x^2\)

= .. ( như phần a )

c, \(y^4+64\)

\(\left(y^2+8\right)\left(y^2-8\right)\)

d, \(4xy+3z-12y-xz\)

\(=4y\left(x-3\right)-z\left(x-3\right)\)

\(=\left(x-3\right)\left(4y-z\right)\)

e, \(x^2-4xy+4y^2-z^2+6z-9\)

\(=\left(x-2y\right)^2-\left(z-3\right)^2\)

g, \(x^2-4xy+5x+4y^2-10y\)

\(=\left(x^2-4xy+4y^2\right)+\left(5x-10y\right)\)

\(=\left(x-2y\right)^2+5\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+5\right)\)

h, \(x^2-7x+6\)

\(=x^2-6x-x+6\)

\(=x\left(x-6\right)-\left(x-6\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

i, \(x^3+5x^2+6x+2\)

\(=x^3+x^2+4x^2+4x+2x+2\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+2\right)\)

28 tháng 10 2017

phần b là 6^4 nhé

6 tháng 6 2019

Lời giải của các bạn đều thỏa mãn yêu cầu đề bài là phân tích đa thức thành nhân tử

6 tháng 6 2017

1)  \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

2)  \(x^3-9x^2+6x+16\)

\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)

\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)

3)   \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-1\right)\)

4)  \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

gửi phần này trước còn lại làm sau !!! tk mk nka !!!

5 tháng 6 2017

nhiều thế

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:

a.

$=(x^2)^2+(\frac{1}{2}y^4)^2+2.x^2.\frac{1}{2}y^4-x^2y^4$

$=(x^2+\frac{1}{2}y^4)^2-(xy^2)^2$
$=(x^2+\frac{1}{2}y^4-xy^2)(x^2+\frac{1}{2}y^4+xy^2)$
b.

$=(\frac{1}{2}x^2)^2+(y^4)^2+2.\frac{1}{2}x^2.y^4-x^2y^4$
$=(\frac{1}{2}x^2+y^4)^2-(xy^2)^2$
$=(\frac{1}{2}x^2+y^4-xy^2)(\frac{1}{2}x^2+y^4+xy^2)$

c.

$=(8x^2)^2+(y^2)^2+2.8x^2.y^2-16x^2y^2$

$=(8x^2+y^2)^2-(4xy)^2=(8x^2+y^2-4xy)(8x^2+y^2+4xy)$

d.

$=\frac{64x^4+y^4}{64}=\frac{1}{64}(8x^2+y^2-4xy)(8x^2+y^2+4xy)$

c: \(64x^4+y^4\)

\(=64x^4+16x^2y^2+y^4-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

 

10 tháng 10 2021

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

10 tháng 10 2021

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

11 tháng 7 2023

b) \(25-x^2+14xy-49y^2\)

\(=25-\left(x^2-14xy+49y^2\right)\)

\(=25-\left[x^2-2\cdot7y\cdot x+\left(7y\right)^2\right]\)

\(=25-\left(x-7y\right)^2\)

\(=5^2-\left(x-7y\right)^2\)

\(=\left[5-\left(x-7y\right)\right]\left[5+\left(x-7y\right)\right]\)

\(=\left(5-x+7y\right)\left(5+x-7y\right)\)

c) \(x^5+x^4+1\)

\(=x^5+x^4+1+x^3-x^3\)

\(=\left(x^5+x^4+x^3\right)+\left(1-x^3\right)\)

\(=x^3\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^3+\left(1-x\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^3+1-x\right)\)

b: 25-x^2+14xy-49y^2

=25-(x-7y)^2

=(5-x+7y)(5+x-7y)

c: =x^5+x^4+x^3+1-x^3

=x^3(x^2+x+1)+(1-x)(x^2+x+1)

=(x^2+x+1)(x^3+1-x)

Ta có: x=2 

nên x-1=1

Ta có: \(B=\left(x+1\right)\left(x^7-x^6+x^5-x^4+x^3-x^2+x-1\right)\)

\(=\left(x+1\right)\left[x^6\left(x-1\right)+x^4\left(x-1\right)+x^2\left(x-1\right)+\left(x-1\right)\right]\)

\(=\left(x+1\right)\left(x^6+x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x+1\right)\left(x^4+1\right)\)

\(=\left(2^4+1\right)\left(2+1\right)^2=17\cdot9=153\)