Cho x+y=3, x.y=2
Tính x^2+y^2; x^3+y^3; x^4+y^4; x^5+y^5; x^6+y^6 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$
$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$
$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$
$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$
$\Leftrightarrow 4Q=3$
$\Leftrightarrow Q=\frac{3}{4}$
= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012
= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012
= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012
= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012
= 1013 - 3.1012 + 3.101 + 2012
= 1002013
\(x=3\ge2\Leftrightarrow y=3+1=4\\ x=-1< 2\Leftrightarrow y=\left(-1\right)^2-2=1-2=-1\\ x=2\ge2\Leftrightarrow y=2+1=3\)
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
b) \(xy+3x-2y=11\)
\(xy+3x-2y-6=11-6\)
\(xy+3x-2y-6=5\)
\(\left(xy+3x\right)-\left(2y+6\right)=5\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow5=\left(-1\right)\left(-5\right)=1\cdot5\)
Bạn tự lập bảng mà thử nghiệm nhé
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
CÓ: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)
CÓ: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)
CÓ: \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)
CÓ: \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)
\(=51-2.9=51-18=33\)
CÓ: \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)
\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)
\(=99-34=65\)
\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)
\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)
\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)