\(CMR:a^2+a+1⋮̸̸9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+6+6^2+...+6^9\)
\(=1+\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+\left(6^7+6^8+6^9\right)\)
\(=1+6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+6^7\left(1+6+6^2\right)\)
\(=1+\left(1+6+6^2\right)\left(6+6^4+6^7\right)\)
\(=1+43\left(6+6^4+6^7\right)\)
Ta thấy \(43\left(6+6^4+6^7\right)⋮43\)
nên A chia 43 dư 1
Ta có :
\(A=10+10^2+10^3+...+10^{2018}\)
\(10A=10^2+10^3+10^4+...+10^{2019}\)
\(10A-A=\left(10^2+10^3+10^4+...+10^{2019}\right)-\left(10+10^2+10^3+...+10^{2018}\right)\)
\(9A=10^{2019}-10\)
\(A=\frac{10^{2019}-10}{9}\)
Vì \(\frac{10^{2019}-10}{9}>\frac{1}{9}\)\(\Rightarrow\)\(A>\frac{1}{9}\)\(\Rightarrow\)ĐỀ SAI
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)
\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)
\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)
\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=k.x\) (1)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=k.y\) (2)
Chia (1) cho (2) ta được:
\(\frac{a^2}{b^2}=\frac{k.x}{k.y}=\frac{x}{y}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\left(đpcm\right).\)
Chúc bạn học tốt!
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)
\(A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{11}\)
\(=\frac{65}{132}\)
vậy \(A>\frac{65}{132}\)
TA CŨNG TƯƠNG TỰ GIÁ SỬ PHẢN CHỨNG \(a^2+a+1⋮9\)
=> \(4a^2+4a+4⋮9\)
=> \(4a^2+4a+4⋮3\)
=> \(\left(2a+1\right)^2+3⋮3\)
Mà: \(3⋮3\)
=> \(\left(2a+1\right)^2⋮3\)
=> \(\left(2a+1\right)^2⋮9\) (1)
MÀ: \(\left(2a+1\right)^2+3⋮9\) (2)
TỪ (1) VÀ (2) => \(3⋮9\)
NHƯNG ĐÂY LÀ 1 ĐIỀU RẤT VÔ LÍ
=> ĐIỀU GIẢ SỬ LÀ SAI
=> TA CÓ ĐPCM.
VẬY \(a^2+a+1\) ko chia hết cho 9 \(\forall a\inℤ\)