b) Cho a, b là các số thực và \(o^o< a< 90^o\). CMR: \(-\sqrt{a^2+b^2}< a.cos_{\alpha}+b.sin_{\alpha}< \sqrt{a^2+b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ nên sửa đề là \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)
với a,b,x,y là số thực ta luôn có \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ay-bx\right)^2\)
từ đẳng thức này ta suy ra \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
dấu "=" xảy ra khi \(\left(ax-by\right)^2=0\)
trở lại bài toán ta luôn có \(\left(a\cos\alpha+b\sin\alpha\right)^2\le\left(a^2+b^2\right)\left(\cos^2\alpha+\sin^2\alpha\right)=a^2+b^2\)
từ đó ta có \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)
Câu 1:
Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)
\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)
Câu 2:
a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
a) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\sin \alpha \) ta có:
\(\sin \alpha = \frac{{\sqrt 3 }}{2}\) với \(\alpha = {60^o}\) và \(\alpha = {120^o}\)
b) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cos \alpha \) ta có:
\(\cos \alpha = \frac{{ - \sqrt 2 }}{2}\) với \(\alpha = {135^o}\)
c) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\tan \alpha \) ta có:
\(\tan \alpha = - 1\) với \(\alpha = {135^o}\)
d) Sử dụng bảng giá trị lượng giác của các góc đặc biệt, hàng \(\cot \alpha \) ta có:
\(\cot \alpha = - \sqrt 3 \) với \(\alpha = {150^o}\)
1. \(\left|ab+cd\right|\le\sqrt{\left(a^2+c^2\right)\left(b^2+d^2\right)}\)
\(\Leftrightarrow\left(ab+cd\right)^2\le\left(a^2+c^2\right)\left(b^2+d^2\right)\)
\(\Leftrightarrow a^2b^2+2abcd+c^2d^2\le a^2b^2+a^2d^2+c^2b^2+c^2d^2\)
\(\Leftrightarrow a^2d^2-2abcd+c^2b^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )
Dấu đẳng thức xảy ra \(\Leftrightarrow ad-bc=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
Cách 1:
Ta có: \(tan\alpha=\sqrt{2}\Rightarrow\left\{{}\begin{matrix}\dfrac{sin\alpha}{cos\alpha}=\sqrt{2}\\1+\left(\sqrt{2}\right)^2=\dfrac{1}{cos^2\alpha}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=\sqrt{2}\cdot cos\alpha\\cos^2\alpha=\dfrac{1}{3}\end{matrix}\right.\)
\(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
\(=\dfrac{\sqrt{2}\cdot cos\alpha-cos\alpha}{\left(\sqrt{2}\cdot cos\alpha\right)^3+3cos^3\alpha+2\cdot\sqrt{2}\cdot cos\alpha}\)
\(=\dfrac{cos\alpha\left(\sqrt{2}-1\right)}{2\sqrt{2}\cdot cos^3\alpha+3cos^3\alpha+2\sqrt{2}\cdot cos\alpha}\)
\(=\dfrac{cos\alpha\left(\sqrt{2}-1\right)}{cos\alpha\left(2\sqrt{2}\cdot cos^2\alpha+3cos^2\alpha+2\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{2}-1}{2\sqrt{2}\cdot cos^2\alpha+3cos^2\alpha+2\sqrt{2}}\)
Thay \(cos^2\alpha=\dfrac{1}{3}\) vào \(P\) ta có:
\(P=\dfrac{\sqrt{2}-1}{2\sqrt{2}\cdot\dfrac{1}{3}+3\cdot\dfrac{1}{3}+2\sqrt{2}}=\dfrac{\sqrt{2}-1}{1+\dfrac{8}{3}\sqrt{2}}\)
\(=\dfrac{3\left(\sqrt{2}-1\right)}{3\left(1+\dfrac{8}{3}\sqrt{2}\right)}=\dfrac{3\left(\sqrt{2}-1\right)}{3+8\sqrt{2}}\)
\(=\dfrac{3\left(\sqrt{2}-1\right)}{3+2^3\sqrt{2}}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Rightarrow a+b=5\)
Chọn đáp án A.
Cách 2:
\(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}=\dfrac{\left(sin\alpha-cos\alpha\right)\div cos^3\alpha}{\left(sin^3\alpha+3cos^3\alpha+2sin\alpha\right)\div cos^3\alpha}\)
\(=\dfrac{\dfrac{sin\alpha}{cos^3\alpha}-\dfrac{1}{cos^2\alpha}}{\dfrac{sin^3\alpha}{cos^3\alpha}+3+2\cdot\dfrac{sin\alpha}{cos^3\alpha}}=\dfrac{\dfrac{sin\alpha}{cos\alpha}\cdot\dfrac{1}{cos^2\alpha}-\dfrac{1}{cos^2\alpha}}{tan^3\alpha+3+2\cdot\dfrac{sin\alpha}{cos\alpha}\cdot\dfrac{1}{cos^2\alpha}}\)
\(=\dfrac{tan\alpha\cdot\left(1+tan^2\alpha\right)-\left(1+tan^2\alpha\right)}{tan^3\alpha+3+2tan\alpha\cdot\left(1+tan^2\alpha\right)}\)
Thay \(tan\alpha=\sqrt{2}\) vào ta có:
\(P=\dfrac{\sqrt{2}\cdot\left[1+\left(\sqrt{2}\right)^2\right]-\left[1+\left(\sqrt{2}\right)^2\right]}{\left(\sqrt{2}\right)^3+3+2\sqrt{2}\cdot\left[1+\left(\sqrt{2}\right)^2\right]}=\dfrac{3\sqrt{2}-3}{2\sqrt{2}+3+6\sqrt{2}}\)
\(=\dfrac{3\left(\sqrt{2}-1\right)}{3+8\sqrt{2}}=\dfrac{3\left(\sqrt{2}-1\right)}{3+2^3\sqrt{2}}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Rightarrow a+b=3+2=5\)
Chọn đáp án A
\(\left(a.cos\alpha+b.sin\alpha\right)^2\le\left(a^2+b^2\right)\left(sin^2a+cos^2a\right)=a^2+b^2\)
\(\Rightarrow-\sqrt{a^2+b^2}\le a.cos\alpha+b.sin\alpha\le\sqrt{a^2+b^2}\)