Đề: Giải phương trình sau:
sin6x + sin4x = cos2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ phương trình ban đầu ta có : \(2\cos5x\sin x=\sqrt{3}\sin^2x+\sin x\cos x\)
\(\Leftrightarrow\begin{cases}\sin x=0\\2\cos5x=\sqrt{3}\sin x+\cos x\end{cases}\)
+) \(\sin x=0\Leftrightarrow x=k\pi\)
+)\(2\cos5x=\sqrt{3}\sin x+\cos x\Leftrightarrow\cos5x=\cos\left(x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\begin{cases}x=-\frac{\pi}{12}+\frac{k\pi}{2}\\x=\frac{\pi}{18}+\frac{k\pi}{3}\end{cases}\)