K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\)

\(9A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\)

\(9A+A=\left(\frac{1}{3}-\frac{1}{3^{^2}}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)

\(10A=\frac{1}{3}-\frac{1}{3^{204}}\)

A = (1/3 - 1/3204) : 10

Vậy A = (1/3 - 1/3204) : 10.

15 tháng 8 2020

A= \(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\left(1\right)\\ \)

   \(\frac{1}{3^2}A=\frac{1}{3^2}\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)

    \(\frac{1}{3^2}A=\frac{1}{3^4}-\frac{1}{3^6}+\frac{1}{3^8}-\frac{1}{3^{10}}+...+\frac{1}{3^{204}}-\frac{1}{3^{206}}\left(2\right)\)

Từ (1) và (2) vế theo vế ta có :\(A-\frac{1}{3^2}A=\frac{8}{9}A=\frac{1}{3^2}-\frac{1}{3^{206}}\)

        \(\Rightarrow A=\left(\frac{1}{3^2}-\frac{1}{3^{206}}\right):\frac{8}{9}\)

10 tháng 4 2019

\(\)Đặt \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{205}}{\frac{204}{1}+\frac{203}{2}+\frac{202}{3}+...+\frac{1}{204}}=\frac{B}{C}\)

Biến đổi C:

\(C=\left(\frac{204}{1}+1\right)+\left(\frac{203}{2}+1\right)+\left(\frac{202}{3}+1\right)+...+\left(\frac{1}{204}+1\right)-204\)

\(=205+\frac{205}{2}+\frac{205}{3}+..+\frac{205}{204}+\frac{205}{205}-205\)

\(=205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}}{205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)}=\frac{1}{205}\)

6 tháng 4 2016

Nhớ cmt cho mk nha

19 tháng 3 2016

a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)

=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\) 

=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.

b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\) 

=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)

Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) 

=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)

=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)

=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

 

9 tháng 3 2017

a) \(\frac{1}{9}\)

b) -1100

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
29 tháng 10 2023

5và 3/8-1 và 5/6

 

17 tháng 6 2015

a= 1/2 + 1/4 + 1/8 - 1 x 1 + 8/1 - 4/1 - 2/1=\(1\frac{7}{8}\)=1,875

b=3/1 - 6/3 - 9/6 - 369/1 : 1/3 + 3/6 + 6/9 - 1/963 \(\approx\)186,665628245067

c=1/1 - 1/2 + 3/1 - 1/4 + 5/1 - 1/6 + 7/1 - 1/8 + 9/1 - 1/10=\(\approx\)23,8583333333333

                                     vậy a>b>c 

**************************l i k e***********************************8

17 tháng 6 2015

A = \(\left(-\frac{1}{8}\right)\times\left(-13\right)=\frac{13}{8}\) => 0 < A < 2

B:  Tử âm ; mẫu dương => B < 0

C = \(\left(\frac{1}{1}+\frac{3}{1}+\frac{5}{1}+\frac{7}{1}+\frac{9}{1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)

= 25  \(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)

Dễ có: B < A < C 

 

8 tháng 7 2016

các bn ơi giải giúp mình đi mà