Tìm GTNN của A = x^3 + y^3 + xy biết x+ y =1 B= (x-1)^2 +(x-3)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(A=\left(x^3+y^3+xy\left(x+y\right)\right)-xy\left(x+y\right)+xy\)
=> \(A=\left(x+y\right)\left(x^2+y^2\right)-xy.1+xy\)
=> \(A=x^2+y^2-xy+xy\)
=> \(A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)
DẤU "=" XẢY RA <=> \(x=y\). MÀ \(x+y=1\)
=> A min \(=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\).
\(B=x^2-2x+1+x^2-6x+9\)
=> \(B=2x^2-8x+10\)
=> \(B=2\left(x^2-4x+4\right)+2\)
=> \(B=2\left(x-2\right)^2+2\)
CÓ: \(2\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2+2\ge2\)
=> \(B\ge2\)
DẤU "=" XẢY RA <=> \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
VẬY B MIN = 2 <=> \(x=2\)