K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

\(\frac{x+1}{x-1}-\frac{x-1}{x-1}=\frac{16}{x^2-1}.\) Đk: x khác 1

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-1=\frac{16}{\left(x-1\right)\left(x+1\right)}.\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{16}{\left(x-1\right)\left(x+1\right)}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-16}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-1}{\left(\text{​​}x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+2x+1-16-x^2+1}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x-14}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow2x-14=0\Rightarrow x=7\)

14 tháng 8 2020

Bonus đk: x khác -1 nữa nha, ;-;

Ta có: \(\dfrac{2x}{x^2-x+1}-\dfrac{x}{x^2+x+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x\left(x^2+x+1\right)-x\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x^3+2x^2+2x-x^3+x^2-x}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{x^3+3x^2+x}{\left(x^2+1\right)^2-x^2}=\dfrac{5}{3}\)

\(\Leftrightarrow3x^3+9x^2+3x=5\left(x^4+2x^2+1-x^2\right)\)

\(\Leftrightarrow3x^3+9x^2+3x=5x^4+5x^2+5\)

\(\Leftrightarrow5x^4+5x^2+5-3x^3-9x^2-3x=0\)

\(\Leftrightarrow5x^4-3x^3-4x^2-3x+5=0\)

\(\Leftrightarrow5x^4-5x^3+2x^3-2x^2-2x^2+2x-5x+5=0\)

\(\Leftrightarrow5x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3+2x^2-2x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3-5x^2+7x^2-7x+5x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5x^2\left(x-1\right)+7x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(5x^2+7x+5\right)=0\)

mà \(5x^2+7x+5>0\forall x\)

nên x-1=0

hay x=1

6 tháng 7 2021

vì sao mà 5x2+7x+5>0?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AH
Akai Haruma
Giáo viên
11 tháng 11 2021

Lời giải:
ĐKXĐ: $x\in\mathbb{R}$

Đặt $\sqrt{x^2+x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$. PT trở thành:
$a=a^2-b^2+b$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

$\Rightarrow a=b$ hoặc $a+b=1$

Nếu $a=b\Leftrightarrow a^2=b^2\Leftrightarrow x^2+x+1=x^2-x+1$

$\Leftrightarrow x=0$

Nếu $a+b=1$

$\Leftrightarrow \sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1$

$\Leftrightarrow \sqrt{x^2+x+1}=1-\sqrt{x^2-x+1}$

$\Rightarrow x^2+x+1=x^2-x+2-2\sqrt{x^2-x+1}$

$\Leftrightarrow 1-2x=2\sqrt{x^2-x+1}$

$\Rightarrow (1-2x)^2=4(x^2-x+1)$

$\Leftrightarrow -3=0$ (vô lý)

Vậy pt có nghiệm $x=0$

10 tháng 5 2021

a,\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\left(đkxđ:x\ne2;4\right)\)

\(< =>\frac{-2}{\left(x-2\right)\left(x-4\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\)

\(< =>-2-\left(x^2-5x+4\right)=x^2+x-5\)

\(< =>-x^2+5x-6-x^2-x+5=0\)

\(< =>-2x^2+4x-1=0\)

\(< =>2x^2-4x+1=0\)

đến đây thì pt bậc 2 dể rồi

10 tháng 5 2021

\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\left(đkxđ:x\ne\pm1\right)\)

\(< =>\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}=\frac{3}{1-x^2}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x^2-1\right)\left(x-1\right)}=-\frac{3}{x^2-1}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x+1\right)\left(x-1\right)^2}=\frac{-3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)

\(< =>2+3x-3+x^2-2x+1=0\)

\(< =>x^2+x=0< =>x\left(x+1\right)=0< =>\orbr{\begin{cases}x=-1\left(loai\right)\\x=0\left(tm\right)\end{cases}}\)

13 tháng 5 2021

a, thay m=2 vào phương trình (1) ta được:

x^2-6.x+3=0

có: \(\Delta\)1=(-6)^2-4.3=24>0

vậy phương trình có 2 nghiệm phân biệt :

x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6

x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6

b, từ phương trình (1) ta có :

\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4

=8m+8

để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0

<=>m\(\ge\)-1

 m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2

theo vi ét=>x1+x2=2m+2

lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)

vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1

 

 

 

13 tháng 5 2021

\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)

a,Thay m=2 vào pt (1) có

\(x^2-2\left(2+1\right)x+2^2-1=0\)

\(x^2-6x+3=0\)

\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2

20 tháng 5 2016

a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm

b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)

    \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)

Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)

20 tháng 5 2016

Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)

Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)

Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\)\(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)

Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)

6 tháng 4 2017

1) tôi giải theo kt lớp 9 nhé nếu theo lp 8 thì phần tích theo đk trong gttđ
   lập bảng xét dấu  
    

x                                1
lx2-1l1-x2                                    0                           x2-1
lx-1l1-x                           0                      x-1
lx2-1l+lx-1l-x2-x+2                                         x2+x-2

với x <1  => x=1   x=-2
với x>1   >x=1      x=-2
vậy  pt có 2 ng phân bịt  x =1 và x=-2
các câu còn lại lm tương tự w nhé 
 chúc bn hc giỏi !!

6 tháng 4 2017

@trần tuấn phát giải giúp mik kiểu lớp 8 với! Mik k hỉu!

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)