K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2022

mình nhầm mẫu nhé :v mình làm lại 

\(=\left(\dfrac{x-\sqrt{x}-2x+4\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\right):\dfrac{2-\sqrt{x}}{x-1}\)

\(=\dfrac{-x+3\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{2-\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2-\sqrt{x}\right)\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

Đề sai rồi bạn

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

NV
10 tháng 9 2021

a. ĐKXĐ \(x\ge2\)

\(\sqrt{x+3}-3+\sqrt{x-2}-2=0\)

\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)

\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2-x-1=\left(1-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2-x-1=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x=2\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\) Pt vô nghiệm 

10 tháng 9 2021

\(a.\sqrt{x+3}=5-\sqrt{x-2}\)

\(\sqrt{x+3}+\sqrt{x-2}=5\)

\(\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}=5^2\)

\(x+3+x-2=25\)

\(2x+1=25\)

\(x=12\)

\(b.\sqrt{x^2-x-1}=1-x\)

\(\sqrt{\left(x^2-x-1\right)^2}=\left(1-x\right)^2\)

\(x^2-x-1=1-2x+x^2\)

\(x^2-x-1-1+2x-x^2=0\)

\(x-2=0\)

\(x=2\)

23 tháng 7 2023

\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\) (ĐK: \(x\ge0,x\ne1\))

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow x-\sqrt{x}=x-2\sqrt{x}+\sqrt{x}-2\)

\(\Leftrightarrow x-\sqrt{x}=x-\sqrt{x}-2\)

\(\Leftrightarrow x-x=\sqrt{x}-\sqrt{x}-2\)

\(\Leftrightarrow0=-2\) (vô lý)

⇒ Phương trình vô nghiệm

23 tháng 7 2023

\(đk:x\ge0;x\ne1\)

\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\\ \Rightarrow x-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}\\ \Rightarrow-\sqrt{x}-2+\sqrt{x}=0\\ \Rightarrow-2=0\left(voli\right)\)

Vậy phương trình vô nghiệm

16 tháng 8 2019

ĐK: \(0\le x\le1\)

Đặt \(t=\sqrt{x}+\sqrt{1-x}\) ( \(t>0\) )

\(\Leftrightarrow t^2=x+1-x+2\sqrt{x\left(1-x\right)}\)

\(\Leftrightarrow t^2-1=2\sqrt{x-x^2}\)

\(\Leftrightarrow\frac{t^2-1}{2}=\sqrt{x-x^2}\)

Ta có \(pt\Leftrightarrow1+\frac{2}{3}\cdot\frac{t^2-1}{2}=t\)

\(\Leftrightarrow1+\frac{t^2-1}{3}-t=0\)

\(\Leftrightarrow t^2-1-3t+3=0\)

\(\Leftrightarrow t^2-3t+2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

TH1: \(\sqrt{x}+\sqrt{1-x}=1\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)( thỏa (

TH2: \(\sqrt{x}+\sqrt{1-x}=2\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=4\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=\frac{3}{2}\)

\(\Leftrightarrow x\left(1-x\right)=\frac{9}{4}\)

\(\Leftrightarrow4x\left(1-x\right)=9\)

\(\Leftrightarrow4x^2-4x+9=0\)

\(\Leftrightarrow\left(2x+1\right)^2+8=0\)( vô lý )

Vậy \(x\in\left\{0;1\right\}\)

NV
20 tháng 1 2024

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)

Áp dụng BĐT trị tuyệt đối:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=\left|2\sqrt{x+1}-2\right|\)

Dấu "=" xảy ra khi và chỉ khi \(\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-3\right)\ge0\)

\(\Leftrightarrow\sqrt{x+1}-3\ge0\)

\(\Leftrightarrow x+1\ge9\)

\(\Leftrightarrow x\ge8\)